Suppr超能文献

使微晶旋转的方法不止一种:通过液晶态形成固态丝的多种途径。

More than one way to spin a crystallite: multiple trajectories through liquid crystallinity to solid silk.

作者信息

Walker Andrew A, Holland Chris, Sutherland Tara D

机构信息

Research School of Biology, Australian National University, Canberra 0200, Australia Food and Nutrition, CSIRO, Canberra 2600, Australia

Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, UK.

出版信息

Proc Biol Sci. 2015 Jun 22;282(1809):20150259. doi: 10.1098/rspb.2015.0259.

Abstract

Arthropods face several key challenges in processing concentrated feedstocks of proteins (silk dope) into solid, semi-crystalline silk fibres. Strikingly, independently evolved lineages of silk-producing organisms have converged on the use of liquid crystal intermediates (mesophases) to reduce the viscosity of silk dope and assist the formation of supramolecular structure. However, the exact nature of the liquid-crystal-forming-units (mesogens) in silk dope, and the relationship between liquid crystallinity, protein structure and silk processing is yet to be fully elucidated. In this review, we focus on emerging differences in this area between the canonical silks containing extended-β-sheets made by silkworms and spiders, and 'non-canonical' silks made by other insect taxa in which the final crystallites are coiled-coils, collagen helices or cross-β-sheets. We compared the amino acid sequences and processing of natural, regenerated and recombinant silk proteins, finding that canonical and non-canonical silk proteins show marked differences in length, architecture, amino acid content and protein folding. Canonical silk proteins are long, flexible in solution and amphipathic; these features allow them both to form large, micelle-like mesogens in solution, and to transition to a crystallite-containing form due to mechanical deformation near the liquid-solid transition. By contrast, non-canonical silk proteins are short and have rod or lath-like structures that are well suited to act both as mesogens and as crystallites without a major intervening phase transition. Given many non-canonical silk proteins can be produced at high yield in E. coli, and that mesophase formation is a versatile way to direct numerous kinds of supramolecular structure, further elucidation of the natural processing of non-canonical silk proteins may to lead to new developments in the production of advanced protein materials.

摘要

节肢动物在将浓缩的蛋白质原料(丝原液)加工成固态、半结晶丝纤维时面临几个关键挑战。引人注目的是,独立进化的产丝生物谱系都采用了液晶中间体(中间相)来降低丝原液的粘度,并辅助超分子结构的形成。然而,丝原液中形成液晶的单元(介晶)的确切性质,以及液晶性、蛋白质结构和丝加工之间的关系仍有待充分阐明。在本综述中,我们关注家蚕和蜘蛛所产含伸展β折叠片层的经典蚕丝与其他昆虫类群所产“非经典”蚕丝(其最终微晶为卷曲螺旋、胶原螺旋或交叉β折叠片层)在这一领域新出现的差异。我们比较了天然、再生和重组丝蛋白的氨基酸序列及加工过程,发现经典和非经典丝蛋白在长度、结构、氨基酸含量和蛋白质折叠方面存在显著差异。经典丝蛋白较长,在溶液中具有柔韧性且具两亲性;这些特性使其既能在溶液中形成大的、类似胶束的介晶,又能在液固转变附近因机械变形而转变为含微晶的形式。相比之下,非经典丝蛋白较短,具有棒状或板条状结构,非常适合既作为介晶又作为微晶,而无需重大的中间相变。鉴于许多非经典丝蛋白可在大肠杆菌中高产生产,且中间相形成是引导多种超分子结构的通用方式,进一步阐明非经典丝蛋白的天然加工过程可能会推动先进蛋白质材料生产的新发展。

相似文献

2
Silk Spinning in Silkworms and Spiders.蚕与蜘蛛的吐丝
Int J Mol Sci. 2016 Aug 9;17(8):1290. doi: 10.3390/ijms17081290.
3
Silks produced by insect labial glands.昆虫唇腺产生的丝。
Prion. 2008 Oct-Dec;2(4):145-53. doi: 10.4161/pri.2.4.7489. Epub 2008 Oct 20.
5
Conservation of essential design features in coiled coil silks.卷曲螺旋丝中基本设计特征的保守性。
Mol Biol Evol. 2007 Nov;24(11):2424-32. doi: 10.1093/molbev/msm171. Epub 2007 Aug 16.

引用本文的文献

6
Protein nanocondensates: the next frontier.蛋白质纳米凝聚物:下一个前沿领域。
Biophys Rev. 2023 Aug 9;15(4):515-530. doi: 10.1007/s12551-023-01105-1. eCollection 2023 Aug.
9
Protein conformation and biomolecular condensates.蛋白质构象与生物分子凝聚物
Curr Res Struct Biol. 2022 Sep 14;4:285-307. doi: 10.1016/j.crstbi.2022.09.004. eCollection 2022.

本文引用的文献

1
Micellar refolding of coiled-coil honeybee silk proteins.卷曲螺旋蜜蜂丝蛋白的胶束重折叠
J Mater Chem B. 2013 Aug 14;1(30):3644-3651. doi: 10.1039/c3tb20611d. Epub 2013 Jun 18.
2
Recombinant production and film properties of full-length hornet silk proteins.全长胡蜂丝蛋白的重组生产及薄膜性能。
Acta Biomater. 2014 Aug;10(8):3590-8. doi: 10.1016/j.actbio.2014.05.013. Epub 2014 May 23.
3
Evidence of α-helical coiled coils and β-sheets in hornet silk.在胡蜂丝中发现α-螺旋卷曲螺旋和β-折叠。
J Struct Biol. 2014 Mar;185(3):303-8. doi: 10.1016/j.jsb.2013.12.005. Epub 2013 Dec 15.
4
Silk protein aggregation kinetics revealed by Rheo-IR.流变红外光谱揭示的丝蛋白聚集动力学
Acta Biomater. 2014 Feb;10(2):776-84. doi: 10.1016/j.actbio.2013.10.032. Epub 2013 Nov 5.
5
Recombinant DNA production of spider silk proteins.蜘蛛丝蛋白的重组 DNA 生产。
Microb Biotechnol. 2013 Nov;6(6):651-63. doi: 10.1111/1751-7915.12081.
9
Flexibility regeneration of silk fibroin in vitro.丝素纤维在体外的弹性再生。
Biomacromolecules. 2012 Jul 9;13(7):2148-53. doi: 10.1021/bm300541g. Epub 2012 Jun 5.
10
Artificial egg stalks made of a recombinantly produced lacewing silk protein.人工蝇蛹丝制成的仿生卵梗。
Angew Chem Int Ed Engl. 2012 Jun 25;51(26):6521-4. doi: 10.1002/anie.201200591. Epub 2012 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验