Suppr超能文献

针对脑 CT 灌注的组织特异性稀疏反卷积。

Tissue-specific sparse deconvolution for brain CT perfusion.

机构信息

School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA.

School of Computing and Information Sciences, Florida International University, Miami, FL 33174, USA.

出版信息

Comput Med Imaging Graph. 2015 Dec;46 Pt 1:64-72. doi: 10.1016/j.compmedimag.2015.04.008. Epub 2015 May 21.

Abstract

Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

摘要

增强低剂量计算机断层灌注(CTP)脑血管病诊断中的灌注图是一项具有挑战性的任务,特别是在低对比度组织类别中,梗死核心和缺血半影区通常发生在此类组织中。稀疏灌注反卷积最近被提出,通过从高剂量灌注图中提取互补信息来恢复低剂量数据,使用联合时空模型,有效提高低剂量灌注 CT 的图像质量和诊断准确性。然而,在脑灌注 CT 中,梗死核心和缺血半影区可能发生的低对比度组织类别往往会过度平滑化,导致关键生物标志物的丢失。在本文中,我们提出了一种组织特异性稀疏反卷积方法,以保留低对比度组织类别的细微灌注信息。我们首先使用在线字典学习从高剂量灌注图的分割中构建组织特异性字典,然后在低剂量 CTP 数据上对块级组织段进行基于反卷积的血流动力学参数估计。对脑血管病患者的临床数据集进行的广泛验证表明,与最先进的方法相比,我们提出的方法具有更好的性能,通过增加大脑中正常组织和缺血组织之间的区分度,有可能提高诊断准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验