Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland.
Chemistry Department, University of Fribourg, 1700 Fribourg, Switzerland.
Chem Soc Rev. 2015 Oct 7;44(17):6287-6305. doi: 10.1039/c4cs00487f. Epub 2015 Jun 9.
Nanomaterials are finding increasing use for biomedical applications such as imaging, diagnostics, and drug delivery. While it is well understood that nanoparticle (NP) physico-chemical properties can dictate biological responses and interactions, it has been difficult to outline a unifying framework to directly link NP properties to expected in vitro and in vivo outcomes. When introduced to complex biological media containing electrolytes, proteins, lipids, etc., nanoparticles (NPs) are subjected to a range of forces which determine their behavior in this environment. One aspect of NP behavior in biological systems that is often understated or overlooked is aggregation. NP aggregation will significantly alter in vitro behavior (dosimetry, NP uptake, cytotoxicity), as well as in vivo fate (pharmacokinetics, toxicity, biodistribution). Thus, understanding the factors driving NP colloidal stability and aggregation is paramount. Furthermore, studying biological interactions with NPs at the nanoscale level requires an interdisciplinary effort with a robust understanding of multiple characterization techniques. This review examines the factors that determine NP colloidal stability, the various efforts to stabilize NP in biological media, the methods to characterize NP colloidal stability in situ, and provides a discussion regarding NP interactions with cells.
纳米材料在医学领域的应用越来越广泛,如成像、诊断和药物输送。虽然人们已经充分认识到纳米颗粒(NP)的物理化学性质可以决定其生物反应和相互作用,但要概述一个统一的框架,将 NP 性质直接与预期的体外和体内结果联系起来,仍然具有一定的挑战性。当纳米颗粒(NPs)被引入含有电解质、蛋白质、脂质等复杂生物介质时,它们会受到一系列力的作用,这些力决定了它们在环境中的行为。NP 在生物系统中的行为,往往被低估或忽视的一个方面是聚集。NP 的聚集会显著改变体外行为(剂量学、NP 摄取、细胞毒性),以及体内命运(药代动力学、毒性、生物分布)。因此,了解驱动 NP 胶体稳定性和聚集的因素至关重要。此外,在纳米尺度上研究与 NP 的生物相互作用需要跨学科的努力,并对多种表征技术有深入的了解。这篇综述考察了决定 NP 胶体稳定性的因素、在生物介质中稳定 NP 的各种努力、原位表征 NP 胶体稳定性的方法,并对 NP 与细胞的相互作用进行了讨论。