文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用超顺磁性纳米颗粒的有前景的生物医学应用。

Promising biomedical applications using superparamagnetic nanoparticles.

作者信息

Fahim Yosri A, Hasani Ibrahim W, Mahmoud Ragab Waleed

机构信息

Health Sector, Faculty of Science, Galala University, Galala City, Suez, 43511, Egypt.

Department of Pharmaceutics, Faculty of Pharmacy, S.P.U., M.P.U and Idlib University, Idlib, Syria.

出版信息

Eur J Med Res. 2025 Jun 2;30(1):441. doi: 10.1186/s40001-025-02696-z.


DOI:10.1186/s40001-025-02696-z
PMID:40452035
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12128481/
Abstract

Magnetic nanoparticles (MNPs) have emerged as powerful tools in biomedicine due to their distinct physicochemical characteristics, including a high surface-area-to-volume ratio, adjustable size, magnetic sensitivity, and compatibility with biological systems. These properties enable precise control through external magnetic fields, making MNPs highly effective in targeted therapeutic and diagnostic applications. Although not inherently intelligent, they can exhibit programmable and responsive behavior under external influence, enhancing their utility in drug delivery and hyperthermia-based treatments. In the medical field, MNPs have been extensively explored for their role in magnetic resonance imaging (MRI) enhancement, selective drug transport, hyperthermia cancer therapy, and biomolecular separation. Within oncology, they facilitate the direct delivery of therapeutic compounds to tumors, reducing systemic side effects and increasing treatment specificity. Additionally, their capacity to produce localized heat when exposed to alternating magnetic fields makes them instrumental in hyperthermia therapy, where malignant cells are selectively eradicated. A key advantage of MNPs is their adaptable surface chemistry, which allows for functionalization with biocompatible polymers, ligands, and other stabilizing agents. These modifications enhance their stability, minimize immune responses, and optimize their performance in physiological environments. Functionalized MNPs have contributed significantly to improving MRI contrast, refining drug delivery mechanisms, and increasing the effectiveness of hyperthermia treatments. This review examines recent breakthroughs in MNP-based medical technologies, with an emphasis on tumor targeting, drug delivery across the blood-brain barrier, and hyperthermia applications.

摘要

磁性纳米颗粒(MNPs)因其独特的物理化学特性,包括高比表面积、可调节尺寸、磁敏感性以及与生物系统的兼容性,已成为生物医学领域的强大工具。这些特性使得通过外部磁场能够实现精确控制,从而使MNPs在靶向治疗和诊断应用中非常有效。尽管MNPs本身并不具备智能,但在外部影响下它们能够表现出可编程和响应性行为,从而提高其在药物递送和基于热疗的治疗中的效用。在医学领域,MNPs在磁共振成像(MRI)增强、选择性药物转运、热疗癌症治疗和生物分子分离方面的作用已得到广泛探索。在肿瘤学领域,它们有助于将治疗化合物直接递送至肿瘤,减少全身副作用并提高治疗特异性。此外,当暴露于交变磁场时,它们产生局部热量的能力使其在热疗中发挥重要作用,可选择性地根除恶性细胞。MNPs的一个关键优势是其适应性表面化学,这使得它们能够用生物相容性聚合物、配体和其他稳定剂进行功能化修饰。这些修饰提高了它们的稳定性,将免疫反应降至最低,并优化了它们在生理环境中的性能。功能化的MNPs在改善MRI对比度、完善药物递送机制以及提高热疗治疗效果方面做出了重大贡献。本综述探讨了基于MNPs的医学技术的最新突破,重点关注肿瘤靶向、血脑屏障药物递送和热疗应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/0a0a2af995a4/40001_2025_2696_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/2e68a8f42cf3/40001_2025_2696_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/529dea78ae9f/40001_2025_2696_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/e8a5e3a9ffce/40001_2025_2696_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/3fbc5be31da7/40001_2025_2696_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/34277d8554de/40001_2025_2696_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/1f68a993534d/40001_2025_2696_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/0a0a2af995a4/40001_2025_2696_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/2e68a8f42cf3/40001_2025_2696_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/529dea78ae9f/40001_2025_2696_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/e8a5e3a9ffce/40001_2025_2696_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/3fbc5be31da7/40001_2025_2696_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/34277d8554de/40001_2025_2696_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/1f68a993534d/40001_2025_2696_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac1e/12128481/0a0a2af995a4/40001_2025_2696_Fig7_HTML.jpg

相似文献

[1]
Promising biomedical applications using superparamagnetic nanoparticles.

Eur J Med Res. 2025-6-2

[2]
Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications.

Small. 2024-2

[3]
Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.

Nanomedicine (Lond). 2017-2

[4]
Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis.

J Cell Physiol. 2018-12-10

[5]
Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications.

Biomater Adv. 2024-10

[6]
Multifunctional Magnetic Nanoparticles for Targeted Drug Delivery Against Cancer: A Review of Mechanisms, Applications, Consequences, Limitations, and Tailoring Strategies.

Ann Biomed Eng. 2025-6

[7]
Magnetic nanoparticles in nanomedicine: a review of recent advances.

Nanotechnology. 2019-9-6

[8]
Magnetic nanocarriers: Evolution of spinel ferrites for medical applications.

Adv Colloid Interface Sci. 2019-1-23

[9]
Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy.

Theranostics. 2020-2-19

[10]
Magnetic Nanoparticles in Cancer Therapy and Diagnosis.

Adv Healthc Mater. 2020-5

引用本文的文献

[1]
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy.

Pharmaceutics. 2025-7-30

[2]
The Biomedical Limitations of Magnetic Nanoparticles and a Biocompatible Alternative in the Form of Magnetotactic Bacteria.

J Funct Biomater. 2025-6-23

[3]
Biomedical and environmental applications via nanobiocatalysts and enzyme immobilization.

Eur J Med Res. 2025-6-21

本文引用的文献

[1]
Efficient removal of Remazol Red dye from aqueous solution using magnetic nickel ferrite nanoparticles synthesized via aqueous reflux.

Sci Rep. 2025-5-20

[2]
Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications.

Chem Rev. 2025-5-14

[3]
Adsorptive removal of lead, copper, and nickel using natural and activated Egyptian calcium bentonite clay.

Sci Rep. 2025-4-16

[4]
Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications.

Antibiotics (Basel). 2025-2-18

[5]
Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy.

Chem Rev. 2025-2-26

[6]
Loading of CAR-T cells with magnetic nanoparticles for controlled targeting suppresses inflammatory cytokine release and switches tumor cell death mechanism.

MedComm (2020). 2025-1-5

[7]
Preclinical Development of Magnetic Nanoparticles for Hyperthermia Treatment of Pancreatic Cancer.

ACS Appl Mater Interfaces. 2025-1-15

[8]
Core-Shell Magnetic Particles: Tailored Synthesis and Applications.

Chem Rev. 2025-1-22

[9]
Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy.

Adv Healthc Mater. 2025-1

[10]
Immobilized lipase enzyme on green synthesized magnetic nanoparticles using Psidium guava leaves for dye degradation and antimicrobial activities.

Sci Rep. 2024-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索