Suppr超能文献

自组装光捕获分子系统中的高效光子上转换

Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems.

作者信息

Ogawa Taku, Yanai Nobuhiro, Monguzzi Angelo, Kimizuka Nobuo

机构信息

Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

1] Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan [2] PRESTO, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.

出版信息

Sci Rep. 2015 Jun 9;5:10882. doi: 10.1038/srep10882.

Abstract

To meet the world's demands on the development of sunlight-powered renewable energy production, triplet-triplet annihilation-based photon upconversion (TTA-UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA-UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA-UC even in the presence of oxygen. A newly developed lipophilic 9,10-diphenylanthracene-based emitter molecule functionalized with multiple hydrogen-bonding moieties spontaneously coassembled with a triplet sensitizer in organic media, showing efficient triplet sensitization and subsequent triplet energy migration among the preorganized chromophores. This supramolecular light-harvesting system shows a high UC quantum yield of 30% optimized at low excitation power in deaerated conditions. Significantly, the UC emission largely remains even in an air-saturated solution, and this approach is facilely applicable to organogel and solid-film systems.

摘要

为满足全球对基于太阳光的可再生能源生产发展的需求,基于三重态-三重态湮灭的光子上转换(TTA-UC)引发了人们的厚望。然而,理想的高效、低功率且能在空气中实现的TTA-UC尚未达成。在此,我们报道了一种实现此目标的新型自组装方法,该方法即使在有氧存在的情况下也能实现高效的TTA-UC。一种新开发的基于9,10-二苯基蒽的亲脂性发射体分子,经多个氢键部分功能化后,在有机介质中与三重态敏化剂自发共组装,在预组织的发色团之间表现出高效的三重态敏化及随后的三重态能量迁移。这种超分子光捕获系统在脱气条件下低激发功率时优化后的上转换量子产率高达30%。值得注意的是,即使在空气饱和溶液中,上转换发射仍大部分保留,且该方法可轻松应用于有机凝胶和固体薄膜体系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验