Institute of Materials Research and Engineering, Agency for Science, Technology & Research, 3 Research Link, Singapore 117602, Singapore.
Nanoscale. 2015 Jul 7;7(25):11190-8. doi: 10.1039/c5nr02399h.
Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu(+)-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au(3+) at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.
在此,我们报告了一种简便的两步法,通过在 220°C 下控制 Cu(+)-油胺配合物的歧化反应形成铜纳米线,并在 140、220 和 300°C 的不同温度下与 Au(3+)反应,制备金掺入的铜 (Cu/Au) 纳米结构。与铜纳米线相比,这些双金属 Cu/Au 纳米结构表现出协同作用,极大地增强了葡萄糖氧化。其中,在 140°C 下制备的形状可控的 Cu/Au 纳米管在碱性溶液中对非酶葡萄糖传感表现出最高的电催化活性。除了高灵敏度和快速响应外,Cu/Au 纳米管对其他潜在干扰物质具有高选择性,并且具有长期稳定性的良好可重复性。通过在铜纳米结构中以相对于初始铜前体 3、1 和 0.1 mol%的低水平引入金,在 1 mol%时,所得双金属 Cu/Au 纳米结构的电催化增强作用开始显著。总的来说,这种稳定的 Cu/Au 纳米结构的制备为葡萄糖的灵敏、选择性、可重复使用和可重复电化学传感提供了一个有前途的低成本平台。