Suppr超能文献

运用机器学习技术预测膀胱癌根治性膀胱切除术后的死亡率

Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques.

作者信息

Wang Guanjin, Lam Kin-Man, Deng Zhaohong, Choi Kup-Sze

机构信息

School of Nursing, Hong Kong Polytechnic University, Hong Kong, China; Centre for Smart Health, School of Nursing, Hong Kong Polytechnic University, Hong Kong, China.

Department of Surgery, Tseung Kwan O Hospital, Hong Kong, China.

出版信息

Comput Biol Med. 2015 Aug;63:124-32. doi: 10.1016/j.compbiomed.2015.05.015. Epub 2015 May 29.

Abstract

Bladder cancer is a common cancer in genitourinary malignancy. For muscle invasive bladder cancer, surgical removal of the bladder, i.e. radical cystectomy, is in general the definitive treatment which, unfortunately, carries significant morbidities and mortalities. Accurate prediction of the mortality of radical cystectomy is therefore needed. Statistical methods have conventionally been used for this purpose, despite the complex interactions of high-dimensional medical data. Machine learning has emerged as a promising technique for handling high-dimensional data, with increasing application in clinical decision support, e.g. cancer prediction and prognosis. Its ability to reveal the hidden nonlinear interactions and interpretable rules between dependent and independent variables is favorable for constructing models of effective generalization performance. In this paper, seven machine learning methods are utilized to predict the 5-year mortality of radical cystectomy, including back-propagation neural network (BPN), radial basis function (RBFN), extreme learning machine (ELM), regularized ELM (RELM), support vector machine (SVM), naive Bayes (NB) classifier and k-nearest neighbour (KNN), on a clinicopathological dataset of 117 patients of the urology unit of a hospital in Hong Kong. The experimental results indicate that RELM achieved the highest average prediction accuracy of 0.8 at a fast learning speed. The research findings demonstrate the potential of applying machine learning techniques to support clinical decision making.

摘要

膀胱癌是泌尿生殖系统恶性肿瘤中一种常见的癌症。对于肌层浸润性膀胱癌,手术切除膀胱,即根治性膀胱切除术,通常是确定性治疗方法,但不幸的是,这种手术会带来显著的发病率和死亡率。因此,需要准确预测根治性膀胱切除术的死亡率。尽管高维医学数据存在复杂的相互作用,但传统上一直使用统计方法来实现这一目的。机器学习作为一种处理高维数据的有前途的技术已崭露头角,在临床决策支持(如癌症预测和预后)中的应用越来越多。它揭示因变量和自变量之间隐藏的非线性相互作用及可解释规则的能力,有利于构建具有有效泛化性能的模型。在本文中,利用七种机器学习方法,对香港一家医院泌尿外科的117例患者的临床病理数据集预测根治性膀胱切除术的5年死亡率,这七种方法包括反向传播神经网络(BPN)、径向基函数网络(RBFN)、极限学习机(ELM)、正则化极限学习机(RELM)、支持向量机(SVM)、朴素贝叶斯(NB)分类器和k近邻(KNN)。实验结果表明,RELM在快速学习速度下实现了最高的平均预测准确率,为0.8。研究结果证明了应用机器学习技术支持临床决策的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验