Suppr超能文献

胸部CT图像中肺结节的无缝插入

Seamless Insertion of Pulmonary Nodules in Chest CT Images.

作者信息

Pezeshk Aria, Sahiner Berkman, Zeng Rongping, Wunderlich Adam, Chen Weijie, Petrick Nicholas

机构信息

Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA.

U.S. Food and Drug Administration.

出版信息

IEEE Trans Biomed Eng. 2015 Dec;62(12):2812-2827. doi: 10.1109/TBME.2015.2445054. Epub 2015 Jun 12.

Abstract

The availability of large medical image datasets is critical in many applications, such as training and testing of computer-aided diagnosis systems, evaluation of segmentation algorithms, and conducting perceptual studies. However, collection of data and establishment of ground truth for medical images are both costly and difficult. To address this problem, we are developing an image blending tool that allows users to modify or supplement existing datasets by seamlessly inserting a lesion extracted from a source image into a target image. In this study, we focus on the application of this tool to pulmonary nodules in chest CT exams. We minimize the impact of user skill on the perceived quality of the composite image by limiting user involvement to two simple steps: the user first draws a casual boundary around a nodule in the source, and, then, selects the center of desired insertion area in the target. We demonstrate the performance of our system on clinical samples, and report the results of a reader study evaluating the realism of inserted nodules compared to clinical nodules. We further evaluate our image blending techniques using phantoms simulated under different noise levels and reconstruction filters. Specifically, we compute the area under the ROC curve of the Hotelling observer (HO) and noise power spectrum of regions of interest enclosing native and inserted nodules, and compare the detectability, noise texture, and noise magnitude of inserted and native nodules. Our results indicate the viability of our approach for insertion of pulmonary nodules in clinical CT images.

摘要

大型医学图像数据集的可用性在许多应用中至关重要,例如计算机辅助诊断系统的训练和测试、分割算法的评估以及进行感知研究。然而,医学图像的数据收集和建立真值既昂贵又困难。为了解决这个问题,我们正在开发一种图像融合工具,该工具允许用户通过将从源图像中提取的病变无缝插入目标图像来修改或补充现有数据集。在本研究中,我们专注于该工具在胸部CT检查中肺结节的应用。我们通过将用户参与限制为两个简单步骤来最小化用户技能对合成图像感知质量的影响:用户首先在源图像中的结节周围绘制一个大致的边界,然后在目标图像中选择所需插入区域的中心。我们展示了我们的系统在临床样本上的性能,并报告了一项读者研究的结果,该研究评估了插入结节与临床结节相比的逼真度。我们还使用在不同噪声水平和重建滤波器下模拟的体模进一步评估了我们的图像融合技术。具体来说,我们计算了霍特林观察者(HO)的ROC曲线下面积以及包含原始结节和插入结节的感兴趣区域的噪声功率谱,并比较了插入结节和原始结节的可检测性、噪声纹理和噪声幅度。我们的结果表明了我们的方法在临床CT图像中插入肺结节的可行性。

相似文献

1
Seamless Insertion of Pulmonary Nodules in Chest CT Images.
IEEE Trans Biomed Eng. 2015 Dec;62(12):2812-2827. doi: 10.1109/TBME.2015.2445054. Epub 2015 Jun 12.
4
Investigation of lung nodule detectability in low-dose 320-slice computed tomography.
Med Phys. 2009 May;36(5):1700-10. doi: 10.1118/1.3112363.
5
A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
J Digit Imaging. 2016 Feb;29(1):86-103. doi: 10.1007/s10278-015-9801-9.
7
Validation of lesion simulations in clinical CT data for anonymized chest and abdominal CT databases.
Med Phys. 2019 Apr;46(4):1931-1937. doi: 10.1002/mp.13412. Epub 2019 Feb 19.
10
Lung nodule pre-diagnosis and insertion path planning for chest CT images.
BMC Med Imaging. 2023 Feb 3;23(1):22. doi: 10.1186/s12880-023-00973-z.

引用本文的文献

1
Synthetic data in generalizable, learning-based neuroimaging.
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.
2
Deep-learning lesion and noise insertion for virtual clinical trial in Chest CT.
Proc SPIE Int Soc Opt Eng. 2021 Feb;11595. doi: 10.1117/12.2582106. Epub 2021 Feb 15.
3
Multiple Lesions Insertion: boosting diabetic retinopathy screening through Poisson editing.
Biomed Opt Express. 2021 Apr 16;12(5):2773-2789. doi: 10.1364/BOE.420776. eCollection 2021 May 1.
4
Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning.
J Med Imaging (Bellingham). 2020 Jan;7(1):012703. doi: 10.1117/1.JMI.7.1.012703. Epub 2019 Nov 22.
6
Interchangeability between real and three-dimensional simulated lung tumors in computed tomography: an interalgorithm volumetry study.
J Med Imaging (Bellingham). 2018 Jul;5(3):035504. doi: 10.1117/1.JMI.5.3.035504. Epub 2018 Sep 24.
8
10
Evaluation of a projection-domain lung nodule insertion technique in thoracic computed tomography.
J Med Imaging (Bellingham). 2017 Jan;4(1):013510. doi: 10.1117/1.JMI.4.1.013510. Epub 2017 Mar 31.

本文引用的文献

2
Simulation and assessment of realistic breast lesions using fractal growth models.
Phys Med Biol. 2013 Aug 21;58(16):5613-27. doi: 10.1088/0031-9155/58/16/5613. Epub 2013 Jul 29.
4
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume.
Eur Radiol. 2012 Oct;22(10):2076-84. doi: 10.1007/s00330-012-2437-y. Epub 2012 Jul 20.
6
Computerized comprehensive data analysis of lung imaging database consortium (LIDC).
Med Phys. 2010 Jul;37(7):3802-8. doi: 10.1118/1.3455701.
7
Information-theoretic approach for analyzing bias and variance in lung nodule size estimation with CT: a phantom study.
IEEE Trans Med Imaging. 2010 Oct;29(10):1795-807. doi: 10.1109/TMI.2010.2052466. Epub 2010 Jun 17.
8
Small-sample precision of ROC-related estimates.
Bioinformatics. 2010 Mar 15;26(6):822-30. doi: 10.1093/bioinformatics/btq037. Epub 2010 Feb 3.
10
Three-dimensional simulation of lung nodules for paediatric multidetector array CT.
Br J Radiol. 2009 May;82(977):401-11. doi: 10.1259/bjr/51749983. Epub 2009 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验