Aguirre Jesús, Hansberg Wilhelm, Navarro Rosa
Departamento de Genética Molecular.
, Bioquímica.
Med Mycol. 2006 Sep 1;44(Supplement_1):S101-S107. doi: 10.1080/13693780600900080.
Reactive oxygen species (ROS) such as hydrogen peroxide, produced externally or during normal metabolism, can damage different cell components and usually trigger a counteracting antioxidant response. The fact that animals and humans utilize ROS and related nitrogen reactive species to prevent fungal infection has generated great interest in defining the components of the antioxidant response and studying their role as virulence determinants in fungi. Here we review the role of specific enzyme and non-enzyme mediated antioxidant mechanisms in virulence, as well as the signal transduction mechanisms that fungal cells use to perceive high ROS levels and induce gene expression. We focus on Schizosaccharomyces pombe antioxidant responses, which involve a prokaryotic-type multistep phosphorelay coupled to a stress-response MAP kinase pathway and an AP-1 type transcription factor, in relation to homologous mechanisms in Aspergillus nidulans and the human pathogen A. fumigatus. Compared to S. pombe and other unicellular fungi, filamentous fungi have additional mechanisms to handle ROS, such as the presence of a larger number of phosphorelay sensor kinases, antioxidant enzymes and secondary metabolites with antioxidant functions. In addition, filamentous fungi have enzymes like the NADPH oxidases, which regulate multicellular development through ROS production and therefore, offer a unique opportunity to study the interplay between ROS production, perception and detoxification, and the role of these processes in cell differentiation and pathogenesis.
活性氧(ROS),如过氧化氢,可在体外产生或在正常新陈代谢过程中产生,它能损害不同的细胞成分,通常会引发一种抵消性的抗氧化反应。动物和人类利用ROS及相关的氮反应性物质来预防真菌感染,这一事实引发了人们对确定抗氧化反应的组成成分以及研究它们在真菌中作为毒力决定因素的作用的浓厚兴趣。在此,我们综述了特定酶和非酶介导的抗氧化机制在毒力中的作用,以及真菌细胞用于感知高ROS水平并诱导基因表达的信号转导机制。我们重点关注粟酒裂殖酵母的抗氧化反应,其涉及与应激反应丝裂原活化蛋白激酶途径及AP - 1型转录因子偶联的原核型多步磷酸化信号传递,同时也涉及构巢曲霉和人类病原体烟曲霉中的同源机制。与粟酒裂殖酵母及其他单细胞真菌相比,丝状真菌具有额外的机制来处理ROS,例如存在更多的磷酸化信号传递传感器激酶、抗氧化酶以及具有抗氧化功能的次生代谢产物。此外,丝状真菌具有像NADPH氧化酶这样的酶,它们通过产生ROS来调节多细胞发育,因此,为研究ROS产生、感知和解毒之间的相互作用以及这些过程在细胞分化和发病机制中的作用提供了独特的机会。