Tao Han, Miao Huiying, Chen Lili, Wang Mengyu, Xia Chuchu, Zeng Wei, Sun Bo, Zhang Fen, Zhang Shuqun, Li Chuanyou, Wang Qiaomei
Department of Horticulture, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
J Integr Plant Biol. 2022 May;64(5):1007-1019. doi: 10.1111/jipb.13245. Epub 2022 Apr 22.
The tryptophan (Trp)-derived plant secondary metabolites, including camalexin, 4-hydroxy-indole-3-carbonylnitrile, and indolic glucosinolate (IGS), show broad-spectrum antifungal activity. However, the distinct regulations of these metabolic pathways among different plant species in response to fungus infection are rarely studied. In this study, our results revealed that WRKY33 directly regulates IGS biosynthesis, notably the production of 4-methoxyindole-3-ylmethyl glucosinolate (4MI3G), conferring resistance to Alternaria brassicicola, an important pathogen which causes black spot in Brassica crops. WRKY33 directly activates the expression of CYP81F2, IGMT1, and IGMT2 to drive side-chain modification of indole-3-ylmethyl glucosinolate (I3G) to 4MI3G, in both Arabidopsis and Chinese kale (Brassica oleracea var. alboglabra Bailey). However, Chinese kale showed a more severe symptom than Arabidopsis when infected by Alternaria brassicicola. Comparative analyses of the origin and evolution of Trp metabolism indicate that the loss of camalexin biosynthesis in Brassica crops during evolution might attenuate the resistance of crops to Alternaria brassicicola. As a result, the IGS metabolic pathway mediated by WRKY33 becomes essential for Chinese kale to deter Alternaria brassicicola. Our results highlight the differential regulation of Trp-derived camalexin and IGS biosynthetic pathways in plant immunity between Arabidopsis and Brassica crops.
色氨酸(Trp)衍生的植物次生代谢产物,包括camalexin、4-羟基吲哚-3-甲腈和吲哚族硫代葡萄糖苷(IGS),具有广谱抗真菌活性。然而,不同植物物种在应对真菌感染时这些代谢途径的独特调控鲜有研究。在本研究中,我们的结果表明WRKY33直接调控IGS生物合成,特别是4-甲氧基吲哚-3-基甲基硫代葡萄糖苷(4MI3G)的产生,赋予对芸苔链格孢的抗性,芸苔链格孢是导致十字花科作物黑斑病的一种重要病原体。在拟南芥和芥蓝(Brassica oleracea var. alboglabra Bailey)中,WRKY33直接激活CYP81F2、IGMT1和IGMT2的表达,以驱动吲哚-3-基甲基硫代葡萄糖苷(I3G)的侧链修饰为4MI3G。然而,被芸苔链格孢感染时,芥蓝比拟南芥表现出更严重的症状。对色氨酸代谢起源和进化的比较分析表明,十字花科作物在进化过程中camalexin生物合成的丧失可能会削弱作物对芸苔链格孢的抗性。因此,由WRKY33介导的IGS代谢途径对芥蓝抵御芸苔链格孢变得至关重要。我们的结果突出了拟南芥和十字花科作物在植物免疫中色氨酸衍生的camalexin和IGS生物合成途径的差异调控。