Suppr超能文献

基于新型监督水平集模型的非刚体目标轮廓跟踪

Non-Rigid Object Contour Tracking via a Novel Supervised Level Set Model.

出版信息

IEEE Trans Image Process. 2015 Nov;24(11):3386-99. doi: 10.1109/TIP.2015.2447213. Epub 2015 Jun 18.

Abstract

We present a novel approach to non-rigid objects contour tracking in this paper based on a supervised level set model (SLSM). In contrast to most existing trackers that use bounding box to specify the tracked target, the proposed method extracts the accurate contours of the target as tracking output, which achieves better description of the non-rigid objects while reduces background pollution to the target model. Moreover, conventional level set models only emphasize the regional intensity consistency and consider no priors. Differently, the curve evolution of the proposed SLSM is object-oriented and supervised by the specific knowledge of the targets we want to track. Therefore, the SLSM can ensure a more accurate convergence to the exact targets in tracking applications. In particular, we firstly construct the appearance model for the target in an online boosting manner due to its strong discriminative power between the object and the background. Then, the learnt target model is incorporated to model the probabilities of the level set contour by a Bayesian manner, leading the curve converge to the candidate region with maximum likelihood of being the target. Finally, the accurate target region qualifies the samples fed to the boosting procedure as well as the target model prepared for the next time step. We firstly describe the proposed mechanism of two-phase SLSM for single target tracking, then give its generalized multi-phase version for dealing with multi-target tracking cases. Positive decrease rate is used to adjust the learning pace over time, enabling tracking to continue under partial and total occlusion. Experimental results on a number of challenging sequences validate the effectiveness of the proposed method.

摘要

本文提出了一种新的基于监督水平集模型(SLSM)的非刚体目标轮廓跟踪方法。与大多数使用边界框来指定跟踪目标的现有跟踪器不同,所提出的方法将目标的精确轮廓提取为跟踪输出,这在跟踪非刚体目标时可以实现更好的描述,同时减少了背景对目标模型的污染。此外,传统的水平集模型仅强调区域强度一致性,并且不考虑先验知识。不同的是,所提出的 SLSM 的曲线演化是面向对象的,并且受到我们要跟踪的目标的具体知识的监督。因此,SLSM 可以确保在跟踪应用中更准确地收敛到目标。特别是,我们首先以在线提升的方式构建目标的外观模型,因为它在目标和背景之间具有很强的判别能力。然后,以贝叶斯方式将学习到的目标模型合并到水平集轮廓的概率模型中,从而使曲线收敛到最有可能成为目标的候选区域。最后,准确的目标区域为提升过程提供的样本以及为下一个时间步准备的目标模型进行了限定。我们首先描述了用于单目标跟踪的两阶段 SLSM 的提出机制,然后给出了用于处理多目标跟踪情况的广义多阶段版本。正的减小率用于随着时间的推移调整学习速度,从而使跟踪能够在部分和完全遮挡的情况下继续进行。在多个具有挑战性的序列上的实验结果验证了所提出的方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验