Suppr超能文献

一种用于非刚性物体跟踪及其形状检索的基于区域的快速活动轮廓模型。

A fast region-based active contour for non-rigid object tracking and its shape retrieval.

作者信息

Mewada Hiren, Al-Asad Jawad F, Patel Amit, Chaudhari Jitendra, Mahant Keyur, Vala Alpesh

机构信息

Electrical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Kingdom of Saudi Arabia.

CHARUSAT Space Research & Technology Center, Charotar University of Science and Technology, Changa, Gujarat, India.

出版信息

PeerJ Comput Sci. 2021 May 27;7:e373. doi: 10.7717/peerj-cs.373. eCollection 2021.

Abstract

Conventional tracking approaches track objects using a rectangle bounding box. Gait, gesture and many medical analyses require non-rigid shape extraction. A non-rigid object tracking is more difficult because it needs more accurate object shape and background separation in contrast to rigid bounding boxes. Active contour plays a vital role in the retrieval of image shape. However, the large computation time involved in contour tracing makes its use challenging in video processing. This paper proposes a new formation of the region-based active contour model (ACM) using a mean-shift tracker for video object tracking and its shape retrieval. The removal of re-initialization and fast deformation of the contour is proposed to retrieve the shape of the desired object. A contour model is further modified using a mean-shift tracker to track and retrieve shape simultaneously. The experimental results and their comparative analysis concludes that the proposed contour-based tracking succeed to track and retrieve the shape of the object with 71.86% accuracy. The contour-based mean-shift tracker resolves the scale-orientation selection problem in non-rigid object tracking, and resolves the weakness of the erroneous localization of the object in the frame by the tracker.

摘要

传统的跟踪方法使用矩形边界框来跟踪对象。步态、手势以及许多医学分析都需要提取非刚性形状。非刚性对象跟踪更为困难,因为与刚性边界框相比,它需要更精确的对象形状和背景分离。活动轮廓在图像形状检索中起着至关重要的作用。然而,轮廓跟踪所涉及的大量计算时间使得其在视频处理中的应用具有挑战性。本文提出了一种基于区域的活动轮廓模型(ACM)的新形式,该模型使用均值漂移跟踪器进行视频对象跟踪及其形状检索。为了检索所需对象的形状,提出了去除轮廓的重新初始化和快速变形的方法。使用均值漂移跟踪器对轮廓模型进行进一步修改,以同时跟踪和检索形状。实验结果及其对比分析表明,所提出的基于轮廓的跟踪方法成功地以71.86%的准确率跟踪和检索了对象的形状。基于轮廓的均值漂移跟踪器解决了非刚性对象跟踪中的尺度方向选择问题,并解决了跟踪器在帧中对对象进行错误定位的弱点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/874b/8176551/517a7b35f316/peerj-cs-07-373-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验