Suppr超能文献

纤毛虫 Oxytricha 中的程序性基因组重排。

Programmed Genome Rearrangements in the Ciliate Oxytricha.

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544.

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544.

出版信息

Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.MDNA3-0025-2014.

Abstract

The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.

摘要

纤毛虫草履虫是一种具有两个基因组的微生物真核生物,其中一个在发育过程中经历广泛的基因组重塑。每一轮的接合都启动了一系列事件,这些事件从混乱的生殖系基因组构建出一个转录活跃的体细胞基因组,长链和小非编码 RNA 都提供了相当大的帮助。这个基因组重塑的过程涉及大量的 DNA 缺失和剩余 DNA 片段的重新排列,从中断和混乱的生殖系前体形成功能基因。将草履虫作为模型系统来研究程序基因组重排的夸张形式提供了机会。此外,研究维持核二态性和介导基因组重排的机制表明,非编码 RNA 途径具有令人惊讶的可塑性和多样性,其新的作用超出了传统的基因沉默。纤毛虫遗传学的另一个方面是它们非正统的 RNA 介导的表观遗传遗传模式,这与孟德尔遗传相媲美。这篇综述带读者了解了在模型真核生物中进行的关键实验,这些实验导致了 RNA 生物学的重大发现,并推动了 DNA 处理的生物学极限。

相似文献

1
Programmed Genome Rearrangements in the Ciliate Oxytricha.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.MDNA3-0025-2014.
2
Recurring patterns among scrambled genes in the encrypted genome of the ciliate Oxytricha trifallax.
J Theor Biol. 2016 Dec 7;410:171-180. doi: 10.1016/j.jtbi.2016.08.038. Epub 2016 Sep 2.
4
Programmed genome rearrangements in Oxytricha produce transcriptionally active extrachromosomal circular DNA.
Nucleic Acids Res. 2019 Oct 10;47(18):9741-9760. doi: 10.1093/nar/gkz725.
5
Thousands of RNA-cached copies of whole chromosomes are present in the ciliate during development.
RNA. 2017 Aug;23(8):1200-1208. doi: 10.1261/rna.058511.116. Epub 2017 Apr 27.
6
The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.
PLoS Biol. 2013;11(1):e1001473. doi: 10.1371/journal.pbio.1001473. Epub 2013 Jan 29.
7
RNA-mediated epigenetic programming of a genome-rearrangement pathway.
Nature. 2008 Jan 10;451(7175):153-8. doi: 10.1038/nature06452. Epub 2007 Nov 28.
9
<mds_ies_db>: a database of ciliate genome rearrangements.
Nucleic Acids Res. 2016 Jan 4;44(D1):D703-9. doi: 10.1093/nar/gkv1190. Epub 2015 Nov 19.
10
Chromosome fusions triggered by noncoding RNA.
RNA Biol. 2017 May 4;14(5):620-631. doi: 10.1080/15476286.2016.1195940. Epub 2016 Jun 7.

引用本文的文献

2
Widespread 3D genome reorganization precedes programmed DNA rearrangement in .
bioRxiv. 2025 Jan 2:2024.12.31.630814. doi: 10.1101/2024.12.31.630814.
3
Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0018422. doi: 10.1128/mmbr.00184-22. Epub 2023 Nov 27.
4
SDRAP for annotating scrambled or rearranged genomes.
NAR Genom Bioinform. 2023 Nov 2;5(4):lqad096. doi: 10.1093/nargab/lqad096. eCollection 2023 Dec.
6
Evolution of genome fragility enables microbial division of labor.
Mol Syst Biol. 2023 Mar 9;19(3):e11353. doi: 10.15252/msb.202211353. Epub 2023 Feb 2.
8
The origin of RNA interference: Adaptive or neutral evolution?
PLoS Biol. 2022 Jun 29;20(6):e3001715. doi: 10.1371/journal.pbio.3001715. eCollection 2022 Jun.
9
Nematode chromosomes.
Genetics. 2022 May 5;221(1). doi: 10.1093/genetics/iyac014.
10
Macronuclear development in ciliates, with a focus on nuclear architecture.
J Eukaryot Microbiol. 2022 Sep;69(5):e12898. doi: 10.1111/jeu.12898. Epub 2022 Mar 16.

本文引用的文献

2
Beyond transcriptional silencing: is methylcytosine a widely conserved eukaryotic DNA elimination mechanism?
Bioessays. 2014 Apr;36(4):346-52. doi: 10.1002/bies.201300123. Epub 2014 Feb 12.
4
Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting.
Dev Cell. 2014 Jan 27;28(2):174-88. doi: 10.1016/j.devcel.2013.12.010. Epub 2014 Jan 16.
5
PIWI proteins and PIWI-interacting RNAs in the soma.
Nature. 2014 Jan 16;505(7483):353-359. doi: 10.1038/nature12987.
6
Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements.
Genes Dev. 2013 Dec 1;27(23):2513-30. doi: 10.1101/gad.229559.113.
7
Transposon domestication versus mutualism in ciliate genome rearrangements.
PLoS Genet. 2013;9(8):e1003659. doi: 10.1371/journal.pgen.1003659. Epub 2013 Aug 1.
9
Molecular mechanisms of RNA interference.
Annu Rev Biophys. 2013;42:217-39. doi: 10.1146/annurev-biophys-083012-130404.
10
A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria.
PLoS One. 2013;8(2):e56777. doi: 10.1371/journal.pone.0056777. Epub 2013 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验