Sobolev Kirill, Kolesnikova Valeria, Omelyanchik Alexander, Alekhina Yulia, Antipova Valentina, Makarova Liudmila, Peddis Davide, Raikher Yuriy L, Levada Katerina, Amirov Abdulkarim, Rodionova Valeria
Research and Education Center "Smart Materials and Biomedical Applications", Immanuel Kant Baltic Federal University, 236014 Kaliningrad, Russia.
Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia.
Polymers (Basel). 2022 Nov 8;14(22):4807. doi: 10.3390/polym14224807.
Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO BTO) and/or ferrimagnetic (ZnCoFeO, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.
基于聚合物的多铁性材料结合了磁性和压电特性,鉴于其在制造生物相容性支架方面的前景,对其进行了从合成到多参数表征的实验研究。这些系统的主要优点是在外部磁场作用下易于产生机械变形和电信号。在此,我们研究了基于聚偏氟乙烯 - 三氟乙烯(PVDF-TrFE)聚合物基体的复合材料,其中填充了压电(钛酸钡,BTO)和/或亚铁磁性(锌钴铁氧体,ZCFO)颗粒的组合。结果表明,BTO微米级颗粒的存在有利于ZCFO填料的条纹型结构形成,并将样品的磁电响应提高到18.6 mV/(cm∙Oe)。除此之外,BTO颗粒的混合至关重要,因为仅填充ZCFO的复合材料在将磁激发转化为机械和电响应方面的效率要低得多。注意力集中在局部表面机械性能上,因为这些性能在很大程度上决定了在这些表面上培养的干细胞的命运。纳米压痕测试借助扫描探针显微镜技术完成。鉴于其已被证实的合适机械性能、高水平的磁电转换以及生物相容性,所考虑类型的复合材料作为基于多铁性的聚合物支架材料很有吸引力。