Suppr超能文献

一种用于大规模蛋白质组学中高效电子转移解离(ETD)的校准程序。

A calibration routine for efficient ETD in large-scale proteomics.

作者信息

Rose Christopher M, Rush Matthew J P, Riley Nicholas M, Merrill Anna E, Kwiecien Nicholas W, Holden Dustin D, Mullen Christopher, Westphall Michael S, Coon Joshua J

机构信息

Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.

Genome Center of Wisconsin, University of Wisconsin, Madison, WI, 53706, USA.

出版信息

J Am Soc Mass Spectrom. 2015 Nov;26(11):1848-57. doi: 10.1007/s13361-015-1183-1. Epub 2015 Jun 26.

Abstract

Electron transfer dissociation (ETD) has been broadly adopted and is now available on a variety of commercial mass spectrometers. Unlike collisional activation techniques, optimal performance of ETD requires considerable user knowledge and input. ETD reaction duration is one key parameter that can greatly influence spectral quality and overall experiment outcome. We describe a calibration routine that determines the correct number of reagent anions necessary to reach a defined ETD reaction rate. Implementation of this automated calibration routine on two hybrid Orbitrap platforms illustrate considerable advantages, namely, increased product ion yield with concomitant reduction in scan rates netting up to 75% more unique peptide identifications in a shotgun experiment. Graphical Abstract ᅟ.

摘要

电子转移解离(ETD)已被广泛采用,现在各种商用质谱仪上均可使用。与碰撞激活技术不同,ETD的最佳性能需要用户具备相当多的知识并进行大量投入。ETD反应持续时间是一个关键参数,它会极大地影响光谱质量和整体实验结果。我们描述了一种校准程序,该程序可确定达到定义的ETD反应速率所需的正确试剂阴离子数量。在两个混合轨道阱平台上实施这种自动校准程序显示出相当大的优势,即提高了产物离子产率,同时降低了扫描速率,在鸟枪法实验中净增加了多达75%的独特肽段鉴定。图形摘要ᅟ 。

相似文献

1
A calibration routine for efficient ETD in large-scale proteomics.
J Am Soc Mass Spectrom. 2015 Nov;26(11):1848-57. doi: 10.1007/s13361-015-1183-1. Epub 2015 Jun 26.
2
Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos.
J Proteome Res. 2011 May 6;10(5):2377-88. doi: 10.1021/pr1011729. Epub 2011 Apr 1.
3
Decision tree-driven tandem mass spectrometry for shotgun proteomics.
Nat Methods. 2008 Nov;5(11):959-64. doi: 10.1038/nmeth.1260. Epub 2008 Oct 19.
4
Implementation of Activated Ion Electron Transfer Dissociation on a Quadrupole-Orbitrap-Linear Ion Trap Hybrid Mass Spectrometer.
Anal Chem. 2017 Jun 20;89(12):6358-6366. doi: 10.1021/acs.analchem.7b00213. Epub 2017 Apr 17.
5
Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer.
Anal Chem. 2007 May 15;79(10):3525-34. doi: 10.1021/ac070020k. Epub 2007 Apr 19.
7
Better score function for peptide identification with ETD MS/MS spectra.
BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S4. doi: 10.1186/1471-2105-11-S1-S4.
8
Performance characteristics of electron transfer dissociation mass spectrometry.
Mol Cell Proteomics. 2007 Nov;6(11):1942-51. doi: 10.1074/mcp.M700073-MCP200. Epub 2007 Aug 1.
10
Large-scale identification of endogenous secretory peptides using electron transfer dissociation mass spectrometry.
Mol Cell Proteomics. 2013 Mar;12(3):700-9. doi: 10.1074/mcp.M112.017400. Epub 2012 Dec 18.

引用本文的文献

1
Autonomous Dissociation-type Selection for Glycoproteomics Using a Real-Time Library Search.
J Proteome Res. 2024 Dec 6;23(12):5606-5614. doi: 10.1021/acs.jproteome.4c00723. Epub 2024 Nov 12.
2
Custom Workflow for the Confident Identification of Sulfotyrosine-Containing Peptides and Their Discrimination from Phosphopeptides.
J Proteome Res. 2023 Dec 1;22(12):3754-3772. doi: 10.1021/acs.jproteome.3c00425. Epub 2023 Nov 8.
3
Deciphering -glycoprotease substrate preferences with O-Pair Search.
Mol Omics. 2022 Dec 5;18(10):908-922. doi: 10.1039/d2mo00244b.
5
6
Structure-guided mutagenesis of a mucin-selective metalloprotease from Akkermansia muciniphila alters substrate preferences.
J Biol Chem. 2022 May;298(5):101917. doi: 10.1016/j.jbc.2022.101917. Epub 2022 Apr 9.
7
Practical Effects of Intramolecular Hydrogen Rearrangement in Electron Transfer Dissociation-Based Proteomics.
J Am Soc Mass Spectrom. 2022 Jan 5;33(1):100-110. doi: 10.1021/jasms.1c00284. Epub 2021 Dec 7.
8
Improved Sequence Analysis of Intact Proteins by Parallel Ion Parking during Electron Transfer Dissociation.
Anal Chem. 2021 Nov 30;93(47):15728-15735. doi: 10.1021/acs.analchem.1c03652. Epub 2021 Nov 17.
9
The regulatory landscape of the human HPF1- and ARH3-dependent ADP-ribosylome.
Nat Commun. 2021 Oct 8;12(1):5893. doi: 10.1038/s41467-021-26172-4.

本文引用的文献

2
Neutron-encoded mass signatures for quantitative top-down proteomics.
Anal Chem. 2014 Mar 4;86(5):2314-9. doi: 10.1021/ac403579s. Epub 2014 Feb 19.
4
Principles of collisional activation in analytical mass spectrometry.
J Am Soc Mass Spectrom. 1992 Sep;3(6):599-614. doi: 10.1016/1044-0305(92)85001-Z.
5
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.
6
The one hour yeast proteome.
Mol Cell Proteomics. 2014 Jan;13(1):339-47. doi: 10.1074/mcp.M113.034769. Epub 2013 Oct 19.
7
Neutron-encoded signatures enable product ion annotation from tandem mass spectra.
Mol Cell Proteomics. 2013 Dec;12(12):3812-23. doi: 10.1074/mcp.M113.028951. Epub 2013 Sep 16.
8
Top-down analysis of 30-80 kDa proteins by electron transfer dissociation time-of-flight mass spectrometry.
Anal Bioanal Chem. 2013 Oct;405(26):8505-14. doi: 10.1007/s00216-013-7267-5. Epub 2013 Aug 10.
9
Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation.
J Am Soc Mass Spectrom. 2013 Nov;24(11):1710-21. doi: 10.1007/s13361-013-0701-2. Epub 2013 Aug 6.
10
Front-end electron transfer dissociation: a new ionization source.
Anal Chem. 2013 Sep 3;85(17):8385-90. doi: 10.1021/ac401783f. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验