Currie Devin H, Raman Babu, Gowen Christopher M, Tschaplinski Timothy J, Land Miriam L, Brown Steven D, Covalla Sean F, Klingeman Dawn M, Yang Zamin K, Engle Nancy L, Johnson Courtney M, Rodriguez Miguel, Shaw A Joe, Kenealy William R, Lynd Lee R, Fong Stephen S, Mielenz Jonathan R, Davison Brian H, Hogsett David A, Herring Christopher D
Mascoma Corporation, 67 Etna Rd, 03766, Lebanon, NH, USA.
BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA.
BMC Syst Biol. 2015 Jun 26;9:30. doi: 10.1186/s12918-015-0159-x.
Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.
Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results.
These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be useful on a comparative basis for development of other lignocellulose degrading microbes, such as Clostridium thermocellum.
嗜糖栖热厌氧菌是一种可降解半纤维素的嗜热厌氧菌,此前经过改造可高产乙醇。开展了一个重大项目,旨在将这种微生物开发成工业生物催化剂,但早期就认识到缺乏基因组信息和资源是一个关键限制因素。
在此,我们提供了一套基因组规模的资源,以实现对这种潜在重要工业微生物的系统水平研究和开发。资源包括菌株JW/SL-YS485的完整基因组序列、代谢的基因组规模重建、显示转录单元的平铺式微阵列数据、来自71种不同生长条件或时间点的mRNA表达数据以及来自42种不同条件或时间点的基于气相色谱/质谱的代谢物分析数据。生长条件包括半纤维素水解产物、抑制剂5-羟甲基糠醛、糠醛、二酰胺和乙醇,以及高水平的纤维素、木糖、纤维二糖或麦芽糊精。该基因组由一条2.7 Mbp的染色体和一条110 Kbp的大质粒组成。还检测到一个活跃的原噬菌体,并且观察到CRISPR基因的表达水平与噬菌体的表达水平相关增加。半纤维素水解产物引发了碳水化合物转运和分解代谢基因以及功能 poorly characterized的基因的反应,表明存在氧化还原挑战。在某些条件下,进行了转录和代谢物测量的时间序列分析,以便仔细研究工艺条件下的微生物生理学。作为代谢重建潜在效用的一个例证,使用OptKnock算法预测了一组能使生长偶联乙醇产量最大化的基因敲除。这些预测验证了直观的菌株设计,并与先前的实验结果相符。
这些数据对于开发嗜糖栖热厌氧菌以高效工业生产生物燃料的努力将是一项有用的资产。本文提供的资源在比较的基础上对于开发其他木质纤维素降解微生物,如热纤梭菌,也可能是有用的。