Suppr超能文献

通过靶向基因缺失,对嗜热解糖梭菌木聚糖的利用进行表征及发现一种新的内切木聚糖酶。

Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions.

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.

出版信息

Appl Environ Microbiol. 2012 Dec;78(23):8441-7. doi: 10.1128/AEM.02130-12. Epub 2012 Sep 28.

Abstract

The economical production of fuels and commodity chemicals from lignocellulose requires the utilization of both the cellulose and hemicellulose fractions. Xylanase enzymes allow greater utilization of hemicellulose while also increasing cellulose hydrolysis. Recent metabolic engineering efforts have resulted in a strain of Thermoanaerobacterium saccharolyticum that can convert C(5) and C(6) sugars, as well as insoluble xylan, into ethanol at high yield. To better understand the process of xylan solubilization in this organism, a series of targeted deletions were constructed in the homoethanologenic T. saccharolyticum strain M0355 to characterize xylan hydrolysis and xylose utilization in this organism. While the deletion of β-xylosidase xylD slowed the growth of T. saccharolyticum on birchwood xylan and led to an accumulation of short-chain xylo-oligomers, no other single deletion, including the deletion of the previously characterized endoxylanase XynA, had a phenotype distinct from that of the wild type. This result indicates a multiplicity of xylanase enzymes which facilitate xylan degradation in T. saccharolyticum. Growth on xylan was prevented only when a previously uncharacterized endoxylanase encoded by xynC was also deleted in conjunction with xynA. Sequence analysis of xynC indicates that this enzyme, a low-molecular-weight endoxylanase with homology to glycoside hydrolase family 11 enzymes, is secreted yet untethered to the cell wall. Together, these observations expand our understanding of the enzymatic basis of xylan hydrolysis by T. saccharolyticum.

摘要

从木质纤维素中经济地生产燃料和商品化学品需要利用纤维素和半纤维素部分。木聚糖酶允许对半纤维素的更大利用,同时也增加纤维素水解。最近的代谢工程努力导致了一种产热厌氧杆菌(Thermoanaerobacterium saccharolyticum)菌株,该菌株可以将 C(5)和 C(6)糖以及不溶性木聚糖高效转化为乙醇。为了更好地理解该生物体中木聚糖溶解的过程,在同源产乙醇的产热厌氧杆菌 M0355 菌株中构建了一系列靶向缺失,以表征该生物体中的木聚糖水解和木糖利用。虽然β-木糖苷酶 xylD 的缺失减缓了产热厌氧杆菌在桦木木聚糖上的生长速度,并导致短链木寡糖的积累,但除了先前表征的内切木聚糖酶 XynA 的缺失外,没有其他单一缺失表现出与野生型不同的表型。这一结果表明存在多种木聚糖酶,它们促进了产热厌氧杆菌中木聚糖的降解。只有当与 xynA 一起缺失先前未表征的内切木聚糖酶 xynC 时,才会阻止在木聚糖上的生长。xynC 的序列分析表明,该酶是一种低分子量内切木聚糖酶,与糖苷水解酶家族 11 酶具有同源性,它是分泌的,但不与细胞壁连接。这些观察结果共同扩展了我们对产热厌氧杆菌木聚糖水解的酶学基础的理解。

相似文献

4
Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI.
Appl Environ Microbiol. 1993 Sep;59(9):3134-7. doi: 10.1128/aem.59.9.3134-3137.1993.
5
GH30-7 Endoxylanase C from the Filamentous Fungus .GH30-7 内切木聚糖酶 C,来源于丝状真菌。
Appl Environ Microbiol. 2019 Oct 30;85(22). doi: 10.1128/AEM.01442-19. Print 2019 Nov 15.

引用本文的文献

本文引用的文献

5
Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes.低聚木糖是纤维素水解酶的强抑制剂。
Bioresour Technol. 2010 Dec;101(24):9624-30. doi: 10.1016/j.biortech.2010.06.137. Epub 2010 Aug 12.
6
Enzymatic deconstruction of xylan for biofuel production.用于生物燃料生产的木聚糖酶解
Glob Change Biol Bioenergy. 2009 Feb 18;1(1):2-17. doi: 10.1111/j.1757-1707.2009.01004.x.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验