Suppr超能文献

体外角膜中光固化聚合物基质内植入物的二次谐波产生显微镜检查

Second-harmonic generation microscopy of photocurable polymer intrastromal implants in ex-vivo corneas.

作者信息

Bueno Juan M, Palacios Raquel, Pennos Alexandros, Artal Pablo

机构信息

Laboratorio de Óptica, Instituto Universitario de Investigación en Óptica y Nanofísica, Universidad de Murcia, Campus de Espinardo (Edificio 34), 30100 Murcia, Spain.

出版信息

Biomed Opt Express. 2015 May 22;6(6):2211-9. doi: 10.1364/BOE.6.002211. eCollection 2015 Jun 1.

Abstract

A custom adaptive-optics (AO) multiphoton microscope was used to visualize the corneal stroma after the insertion of a photocurable polymer material. A lamellar pocket was created and a certain amount of polymer in liquid form was injected. This turned into a rigid film after UV irradiation. Intact eyes were used as control. Tomographic and regular second harmonic generation (SHG) microscopy images were recorded from both control and corneas with polymer implants. In control corneas, the SHG signal decreased uniformly with depth. However, treated corneas exhibited an abrupt loss of SHG signal at the implant location. The use of AO increased the SHG levels and improved the visualization of the stroma, not only at deeper corneal layers but also beneath the implant. Moreover, the absence of SHG signal from the implant allowed its geometrical characterization (thickness and location). This technique offers a potential tool for non-invasive analysis of morphological changes in the cornea after surgery or treatment, and might be useful in future clinical environments.

摘要

使用定制的自适应光学(AO)多光子显微镜来观察光固化聚合物材料植入后角膜基质的情况。制作了一个板层袋,并注入一定量的液态聚合物。紫外线照射后,该聚合物变成了刚性薄膜。以完整的眼睛作为对照。从对照角膜和植入聚合物的角膜记录断层扫描和常规二次谐波产生(SHG)显微镜图像。在对照角膜中,SHG信号随深度均匀下降。然而,经处理的角膜在植入物位置处SHG信号突然消失。AO的使用不仅提高了更深角膜层以及植入物下方基质的SHG水平,还改善了基质的可视化。此外,植入物处没有SHG信号,从而可以对其进行几何特征描述(厚度和位置)。该技术为手术或治疗后角膜形态变化的非侵入性分析提供了一种潜在工具,并且可能在未来的临床环境中有用。

相似文献

1
Second-harmonic generation microscopy of photocurable polymer intrastromal implants in ex-vivo corneas.
Biomed Opt Express. 2015 May 22;6(6):2211-9. doi: 10.1364/BOE.6.002211. eCollection 2015 Jun 1.
2
Multiphoton microscopy of ex vivo corneas after collagen cross-linking.
Invest Ophthalmol Vis Sci. 2011 Jul 18;52(8):5325-31. doi: 10.1167/iovs.11-7184.
3
Quantitative Discrimination of Healthy and Diseased Corneas With Second Harmonic Generation Microscopy.
Transl Vis Sci Technol. 2019 Jun 27;8(3):51. doi: 10.1167/tvst.8.3.51. eCollection 2019 May.
4
Analysis of spatial lamellar distribution from adaptive-optics second harmonic generation corneal images.
Biomed Opt Express. 2013 Jun 4;4(7):1006-13. doi: 10.1364/BOE.4.001006. Print 2013 Jul 1.
6
Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas.
Biomed Opt Express. 2011 Nov 1;2(11):2950-60. doi: 10.1364/BOE.2.002950. Epub 2011 Oct 3.
7
Hyperglycemia-induced abnormalities in rat and human corneas: the potential of second harmonic generation microscopy.
PLoS One. 2012;7(11):e48388. doi: 10.1371/journal.pone.0048388. Epub 2012 Nov 5.
9
Corneal Collagen Ordering After In Vivo Rose Bengal and Riboflavin Cross-Linking.
Invest Ophthalmol Vis Sci. 2020 Mar 9;61(3):28. doi: 10.1167/iovs.61.3.28.
10
Quantitative structural imaging of keratoconic corneas using polarization-resolved SHG microscopy.
Biomed Opt Express. 2021 Jun 16;12(7):4163-4178. doi: 10.1364/BOE.426145. eCollection 2021 Jul 1.

引用本文的文献

1
Quantitative structural organization of the sclera in chicks after deprivation myopia measured with second harmonic generation microscopy.
Front Med (Lausanne). 2024 Oct 22;11:1462024. doi: 10.3389/fmed.2024.1462024. eCollection 2024.
2
Blind deconvolution of second harmonic microscopy images of the living human eye.
Biomed Opt Express. 2023 Apr 19;14(5):2117-2128. doi: 10.1364/BOE.486989. eCollection 2023 May 1.
3
Assessment of the corneal collagen organization after chemical burn using second harmonic generation microscopy.
Biomed Opt Express. 2021 Jan 11;12(2):756-765. doi: 10.1364/BOE.412819. eCollection 2021 Feb 1.
4
Arrangement of the photoreceptor mosaic in a diabetic rat model imaged with multiphoton microscopy.
Biomed Opt Express. 2020 Aug 7;11(9):4901-4914. doi: 10.1364/BOE.399835. eCollection 2020 Sep 1.
5
Quantitative Discrimination of Healthy and Diseased Corneas With Second Harmonic Generation Microscopy.
Transl Vis Sci Technol. 2019 Jun 27;8(3):51. doi: 10.1167/tvst.8.3.51. eCollection 2019 May.
6
Comparison of second harmonic microscopy images of collagen-based ocular tissues with 800 and 1045 nm.
Biomed Opt Express. 2017 Oct 19;8(11):5065-5074. doi: 10.1364/BOE.8.005065. eCollection 2017 Nov 1.

本文引用的文献

1
Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma.
Invest Ophthalmol Vis Sci. 2013 Nov 5;54(12):7293-301. doi: 10.1167/iovs.13-13150.
3
Fast Fourier transform-based analysis of second-harmonic generation image in keratoconic cornea.
Invest Ophthalmol Vis Sci. 2012 Jun 14;53(7):3501-7. doi: 10.1167/iovs.10-6697.
4
In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy.
Biomed Opt Express. 2012 Jan 1;3(1):1-15. doi: 10.1364/BOE.3.000001. Epub 2011 Dec 1.
5
Femtosecond infrared intrastromal ablation and backscattering-mode adaptive-optics multiphoton microscopy in chicken corneas.
Biomed Opt Express. 2011 Nov 1;2(11):2950-60. doi: 10.1364/BOE.2.002950. Epub 2011 Oct 3.
6
Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics.
Invest Ophthalmol Vis Sci. 2011 Nov 11;52(12):8818-27. doi: 10.1167/iovs.11-8070.
8
Quantitative assessment of UVA-riboflavin corneal cross-linking using nonlinear optical microscopy.
Invest Ophthalmol Vis Sci. 2011 Jun 16;52(7):4231-8. doi: 10.1167/iovs.10-7105.
10
Multiphoton microscopy of ex vivo corneas after collagen cross-linking.
Invest Ophthalmol Vis Sci. 2011 Jul 18;52(8):5325-31. doi: 10.1167/iovs.11-7184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验