Green Edward W, O'Callaghan Emma K, Hansen Celia N, Bastianello Stefano, Bhutani Supriya, Vanin Stefano, Armstrong James Douglas, Costa Rodolfo, Kyriacou Charalambos P
Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom;
Actual Analytics, Edinburgh EH8 9LE, United Kingdom;
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8702-7. doi: 10.1073/pnas.1506093112. Epub 2015 Jun 29.
Under standard laboratory conditions of rectangular light/dark cycles and constant warm temperature, Drosophila melanogaster show bursts of morning (M) and evening (E) locomotor activity and a "siesta" in the middle of the day. These M and E components have been critical for developing the neuronal dual oscillator model in which clock gene expression in key cells generates the circadian phenotype. However, under natural European summer conditions of cycling temperature and light intensity, an additional prominent afternoon (A) component that replaces the siesta is observed. This component has been described as an "artifact" of the TriKinetics locomotor monitoring system that is used by many circadian laboratories world wide. Using video recordings, we show that the A component is not an artifact, neither in the glass tubes used in TriKinetics monitors nor in open-field arenas. By studying various mutants in the visual and peripheral and internal thermo-sensitive pathways, we reveal that the M component is predominantly dependent on visual input, whereas the A component requires the internal thermo-sensitive channel transient receptor potential A1 (TrpA1). Knockdown of TrpA1 in different neuronal groups reveals that the reported expression of TrpA1 in clock neurons is unlikely to be involved in generating the summer locomotor profile, suggesting that other TrpA1 neurons are responsible for the A component. Studies of circadian rhythms under seminatural conditions therefore provide additional insights into the molecular basis of circadian entrainment that would otherwise be lost under the usual standard laboratory protocols.
在矩形光暗循环和恒定温暖温度的标准实验室条件下,黑腹果蝇表现出早晨(M)和傍晚(E)的运动活动爆发以及中午的“午睡”。这些M和E成分对于建立神经元双振荡器模型至关重要,在该模型中,关键细胞中的时钟基因表达产生昼夜节律表型。然而,在欧洲夏季自然的温度和光照强度循环条件下,观察到一个额外的突出的下午(A)成分,它取代了午睡。这个成分被描述为许多全球昼夜节律实验室使用的TriKinetics运动监测系统的“假象”。通过视频记录,我们表明,无论是在TriKinetics监测器中使用的玻璃管中还是在开放场地中,A成分都不是假象。通过研究视觉、外周和内部热敏通路中的各种突变体,我们发现M成分主要依赖于视觉输入,而A成分需要内部热敏通道瞬时受体电位A1(TrpA1)。在不同神经元组中敲低TrpA1表明,时钟神经元中报道的TrpA1表达不太可能参与产生夏季运动模式,这表明其他TrpA1神经元负责A成分。因此,在半自然条件下对昼夜节律的研究为昼夜节律同步的分子基础提供了额外的见解,否则这些见解在通常的标准实验室方案下会丢失。