Suppr超能文献

产甲烷互营群落中的热力学与氢气传递

Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community.

作者信息

Hamilton Joshua J, Calixto Contreras Montserrat, Reed Jennifer L

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2015 Jul 6;11(7):e1004364. doi: 10.1371/journal.pcbi.1004364. eCollection 2015 Jul.

Abstract

Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei.

摘要

自然界中的微生物并非孤立存在,而是与其环境中的其他物种相互作用。一些微生物通过互营共生关系进行相互作用,其中一个物种的代谢副产物作为另一个物种的营养物质。这些关系维持着各种自然群落,包括参与甲烷生成的群落。在厌氧互营群落中,能量通过直接接触和电子交换或小分子扩散从一个物种转移到另一个物种。热力学在控制这些相互作用中起着重要作用,因为第一个群落成员进行的氧化反应只有在降解产物被第二个群落成员消耗时才可能发生。这项工作展示了对富马酸氧化互营杆菌和亨氏甲烷螺菌的基因组规模网络重建的开发和分析。这些模型用于验证每个物种内提出的ATP产生机制。然后,我们确定了匹配实验观察所需的额外约束条件和细胞目标函数。热力学富马酸氧化互营杆菌模型无法解释为什么富马酸氧化互营杆菌在纯培养中不产生H2,这表明当前方法可能无法充分估计热力学,或者其他细胞过程(如调节)发挥了作用。我们还开发了这两种生物之间关联的热力学共培养模型。该共培养模型正确预测了两种物种之间H2和甲酸盐的交换,并提出了富马酸氧化互营杆菌产生的H2和甲酸盐将被亨氏甲烷螺菌完全消耗的条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ba3/4509577/6d19518c3039/pcbi.1004364.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验