Suppr超能文献

合成丙酸氧化中微生物途径变体的综合生物能量评估

Comprehensive Bioenergetic Evaluation of Microbial Pathway Variants in Syntrophic Propionate Oxidation.

作者信息

Patón Mauricio, Hernández Héctor H, Rodríguez Jorge

机构信息

Department of Chemical Engineering, Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.

出版信息

mSystems. 2020 Dec 8;5(6):e00814-20. doi: 10.1128/mSystems.00814-20.

Abstract

In this work, a systematic methodology was developed (based on known biochemistry, physiology, and bioenergetics) for the automated feasibility evaluation and net ATP yield quantification of large sets of pathway variants. Possible pathway variants differ in their intermediate metabolites, in which electron carriers are involved, in which steps are consuming/producing ATP, and in which steps are coupled to (and to how many) proton (or its equivalent) translocations. A pathway variant is deemed feasible, under a given set of physiological and environmental conditions, only if all pathway reaction steps have nonpositive Gibbs energy changes and if all the metabolite concentrations remain within an acceptable physiological range (10 to 10 M). The complete understanding of syntrophic propionate oxidation remains elusive due to uncertainties in pathways and the mechanisms for interspecies electron transfer (IET). Several million combinations of pathway variants and parameters/conditions were evaluated for propionate oxidation, providing unprecedented mechanistic insight into its biochemical and bioenergetic landscape. Our results show that, under a scenario of optimum environmental conditions for propionate oxidation, the pathway yields the most ATP and the methylmalonyl-coenzyme A (CoA) pathways can generate sufficient ATP for growth only under a cyclical pathway configuration with pyruvate. The results under conditions typical of methanogenic environments show that propionate oxidation via the lactate and via the hydroxypropionyl-CoA pathways yield the most ATP. IET between propionate oxidizers and methanogens can proceed either by dissolved hydrogen via the pathway or by different mechanisms (e.g., formate or direct IET) if other pathways are used. In this work, an original methodology was developed that quantifies bioenergetically and physiologically feasible net ATP yields for large numbers of microbial metabolic pathways and their variants under different conditions. All variants are evaluated, which ensures global optimality in finding the pathway variant(s) leading to the highest ATP yield. The methodology is designed to be especially relevant to hypothesize on which microbial pathway variants should be most favored in microbial ecosystems under high selective pressure for efficient metabolic energy conservation. Syntrophic microbial oxidation of propionate to acetate has an extremely small quantity of available energy and requires an extremely high metabolic efficiency to sustain life. Our results bring mechanistic insights into the optimum pathway variants, other metabolic bottlenecks, and the impact of environmental conditions on the ATP yields. Additionally, our results conclude that, as previously reported, under specific conditions, IET mechanisms other than hydrogen must exist to simultaneously sustain the growth of both propionate oxidizers and hydrogenotrophic methanogens.

摘要

在这项工作中,开发了一种系统方法(基于已知的生物化学、生理学和生物能量学),用于对大量途径变体进行自动可行性评估和净ATP产量定量。可能的途径变体在其中间代谢物、涉及的电子载体、消耗/产生ATP的步骤以及与质子(或其等效物)转运偶联的步骤(以及与多少质子转运偶联)方面存在差异。在给定的一组生理和环境条件下,只有当所有途径反应步骤的吉布斯自由能变化为非正值,并且所有代谢物浓度保持在可接受的生理范围内(10⁻⁶至10⁻³M)时,途径变体才被认为是可行的。由于途径和种间电子转移(IET)机制的不确定性,对丙酸共生氧化的全面理解仍然难以捉摸。对丙酸氧化的数百万种途径变体和参数/条件组合进行了评估,为其生化和生物能量景观提供了前所未有的机制性见解。我们的结果表明,在丙酸氧化的最佳环境条件下,该途径产生的ATP最多,并且甲基丙二酰辅酶A(CoA)途径只有在与丙酮酸的循环途径配置下才能产生足够的ATP用于生长。在产甲烷环境典型条件下的结果表明,通过乳酸途径和羟基丙酰辅酶A途径进行的丙酸氧化产生的ATP最多。丙酸氧化菌和产甲烷菌之间的IET可以通过溶解氢通过该途径进行,或者如果使用其他途径,则可以通过不同的机制(例如甲酸或直接IET)进行。在这项工作中,开发了一种原始方法,该方法可以在不同条件下对大量微生物代谢途径及其变体进行生物能量学和生理学上可行的净ATP产量定量。对所有变体进行评估,这确保了在找到导致最高ATP产量的途径变体方面的全局最优性。该方法旨在特别有助于推测在高效代谢能量守恒的高选择压力下,微生物生态系统中哪些微生物途径变体应该最受青睐。丙酸向乙酸的共生微生物氧化具有极少的可用能量,并且需要极高的代谢效率来维持生命。我们的结果为最佳途径变体、其他代谢瓶颈以及环境条件对ATP产量的影响带来了机制性见解。此外,我们的结果得出结论,如先前报道的那样,在特定条件下,必须存在除氢以外的IET机制,以同时维持丙酸氧化菌和氢营养型产甲烷菌的生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4580/7743110/9814de9fff29/mSystems.00814-20-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验