Suppr超能文献

大肠杆菌基因组规模代谢网络重建的基础和应用。

Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Mol Syst Biol. 2013;9:661. doi: 10.1038/msb.2013.18.

Abstract

The genome-scale model (GEM) of metabolism in the bacterium Escherichia coli K-12 has been in development for over a decade and is now in wide use. GEM-enabled studies of E. coli have been primarily focused on six applications: (1) metabolic engineering, (2) model-driven discovery, (3) prediction of cellular phenotypes, (4) analysis of biological network properties, (5) studies of evolutionary processes, and (6) models of interspecies interactions. In this review, we provide an overview of these applications along with a critical assessment of their successes and limitations, and a perspective on likely future developments in the field. Taken together, the studies performed over the past decade have established a genome-scale mechanistic understanding of genotype-phenotype relationships in E. coli metabolism that forms the basis for similar efforts for other microbial species. Future challenges include the expansion of GEMs by integrating additional cellular processes beyond metabolism, the identification of key constraints based on emerging data types, and the development of computational methods able to handle such large-scale network models with sufficient accuracy.

摘要

该细菌大肠杆菌 K-12 的代谢的基因组规模模型(GEM)已经开发了十多年,现在得到了广泛的应用。基于 GEM 的大肠杆菌研究主要集中在六个应用领域:(1)代谢工程,(2)模型驱动的发现,(3)细胞表型预测,(4)生物网络特性分析,(5)进化过程研究,以及(6)种间相互作用模型。在这篇综述中,我们概述了这些应用,并对它们的成功和局限性进行了批判性评估,以及对该领域未来发展的展望。总的来说,过去十年的研究已经在大肠杆菌代谢中建立了一种基于基因组规模的机制理解基因型-表型关系,这为其他微生物物种的类似研究奠定了基础。未来的挑战包括通过整合代谢以外的其他细胞过程来扩展 GEM,根据新兴数据类型确定关键约束,以及开发能够以足够的准确性处理此类大规模网络模型的计算方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f75f/3658273/2a1a6a669f21/msb201318-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验