Suppr超能文献

自动睡眠纺锤波检测:使用开放科学工具进行具有精细时间分辨率的基准测试。

Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools.

作者信息

O'Reilly Christian, Nielsen Tore

机构信息

MEG Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University Montreal, QC, Canada ; Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal Montreal, QC, Canada ; Département de Psychiatrie, Université de Montréal Montreal, QC, Canada.

Dream and Nightmare Laboratory, Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal Montreal, QC, Canada ; Département de Psychiatrie, Université de Montréal Montreal, QC, Canada.

出版信息

Front Hum Neurosci. 2015 Jun 24;9:353. doi: 10.3389/fnhum.2015.00353. eCollection 2015.

Abstract

Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: (1) that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; (2) because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; (3) reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew's correlation coefficient, F1-score, or Cohen's κ is necessary for adequate evaluation; (4) reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; (5) performance differences between tested automated detectors were found to be similar to those between available expert scorings; (6) much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldomly posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment.

摘要

睡眠纺锤波特性可反映诸如记忆巩固等认知能力以及诸如重度抑郁症等疾病。因此,在多导睡眠图记录中对睡眠纺锤波特性进行评分已成为研究和临床环境中的一项重要活动。这项手动任务的繁琐促使人们努力实现其自动化。尽管已经取得了一些进展,但提高纺锤波评分的时间准确性和改进性能评估方法是两个需要更多关注的方面。本文提出了四种具有精细时间分辨率的开放获取自动纺锤波检测器,并针对两个专有数据库和两个开放获取数据库的专家评分进行了测试。结果突出了几个发现:(1)在比较使用不同数据库或评分测试的纺锤波检测器的性能时,专家评分和多导睡眠图数据库是重要的混杂因素;(2)由于纺锤波是稀疏事件,特异性估计对于评估自动检测器性能可能会产生误导;(3)仅用敏感性和特异性估计来报告纺锤波检测器的性能,正如文献中常见的那样,是不够的;包括敏感性、精确性以及更全面的统计量,如马修斯相关系数、F1分数或科恩κ系数,对于充分评估是必要的;(4)报告一些合理决策阈值范围内的统计数据提供了更完整和有用的基准;(5)发现测试的自动检测器之间的性能差异与可用的专家评分之间的差异相似;(6)需要更多的发展来有效地比较不同研究团队开发的纺锤波检测器的性能。最后,这项工作澄清了一个长期存在但很少被提出的问题,即专家评分是否真的是睡眠纺锤波评估的可靠金标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd4/4478395/d39ce9ec7195/fnhum-09-00353-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验