University College London , Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, Gower Street, WC1E 6BT, United Kingdom.
Neurophotonics. 2015 Apr;2(2):025005. doi: 10.1117/1.NPh.2.2.025005. Epub 2015 May 26.
In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source-detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant.
近年来,已经证明使用短分离的功能近红外光谱(fNIRS)通道来明确地采样脑外组织,可以显著提高 fNIRS 测量的准确性和可靠性。这些短分离通道的目的是测量与标准 fNIRS 通道观察到的相同的表面血液动力学,同时对大脑不敏感。我们使用在解剖学上有信息的多层模型中的光子传输蒙特卡罗模拟来确定成人和新生儿群体中短分离通道的最佳源-探测器距离。我们提供了一个查找图,为短分离通道相对于标准通道的脑灵敏度(相对于标准通道的脑灵敏度)提供了最佳的短分离距离。虽然值在头皮上有所不同,但是当短分离通道脑灵敏度与标准通道脑灵敏度的可接受比值设置为 5%时,典型成人的最佳短分离距离为 8.4 毫米,足月婴儿的最佳短分离距离为 2.15 毫米。