Suppr超能文献

数字乳腺摄影中的实质纹理分析:稳健的纹理特征识别及不同设备间的等效性

Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.

作者信息

Keller Brad M, Oustimov Andrew, Wang Yan, Chen Jinbo, Acciavatti Raymond J, Zheng Yuanjie, Ray Shonket, Gee James C, Maidment Andrew D A, Kontos Despina

机构信息

University of Pennsylvania , Perelman School of Medicine, Department of Radiology, 3600 Market Street, Suite 360, Philadelphia, Pennsylvania 19104, United States.

University of Pennsylvania , Perelman School of Medicine, Department of Biostatistics and Epidemiology, 3600 Market Street, Suite 360, Philadelphia, Pennsylvania 19104, United States.

出版信息

J Med Imaging (Bellingham). 2015 Apr;2(2):024501. doi: 10.1117/1.JMI.2.2.024501. Epub 2015 Apr 3.

Abstract

An analytical framework is presented for evaluating the equivalence of parenchymal texture features across different full-field digital mammography (FFDM) systems using a physical breast phantom. Phantom images (FOR PROCESSING) are acquired from three FFDM systems using their automated exposure control setting. A panel of texture features, including gray-level histogram, co-occurrence, run length, and structural descriptors, are extracted. To identify features that are robust across imaging systems, a series of equivalence tests are performed on the feature distributions, in which the extent of their intersystem variation is compared to their intrasystem variation via the Hodges-Lehmann test statistic. Overall, histogram and structural features tend to be most robust across all systems, and certain features, such as edge enhancement, tend to be more robust to intergenerational differences between detectors of a single vendor than to intervendor differences. Texture features extracted from larger regions of interest (i.e., [Formula: see text]) and with a larger offset length (i.e., [Formula: see text]), when applicable, also appear to be more robust across imaging systems. This framework and observations from our experiments may benefit applications utilizing mammographic texture analysis on images acquired in multivendor settings, such as in multicenter studies of computer-aided detection and breast cancer risk assessment.

摘要

提出了一种分析框架,用于使用物理乳腺模型评估不同全视野数字化乳腺摄影(FFDM)系统之间实质纹理特征的等效性。使用其自动曝光控制设置从三个FFDM系统获取用于处理的模型图像。提取了一组纹理特征,包括灰度直方图、共生矩阵、游程长度和结构描述符。为了识别在不同成像系统中稳健的特征,对特征分布进行了一系列等效性测试,其中通过霍奇斯-莱曼检验统计量将它们的系统间变化程度与其系统内变化进行比较。总体而言,直方图和结构特征在所有系统中往往最为稳健,并且某些特征,如边缘增强,对单个供应商探测器之间的代际差异比对供应商间差异更具稳健性。从较大感兴趣区域(即[公式:见正文])提取的纹理特征,以及在适用时具有较大偏移长度(即[公式:见正文])的纹理特征,在不同成像系统中似乎也更具稳健性。我们实验的这个框架和观察结果可能有益于在多供应商环境中获取的图像上利用乳腺X线纹理分析的应用,例如在计算机辅助检测和乳腺癌风险评估的多中心研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验