Suppr超能文献

定量纹理分析:放射组学在两家数字乳腺摄影设备制造商系统中的稳健性

Quantitative texture analysis: robustness of radiomics across two digital mammography manufacturers' systems.

作者信息

Mendel Kayla R, Li Hui, Lan Li, Cahill Cathleen M, Rael Victoria, Abe Hiroyuki, Giger Maryellen L

机构信息

University of Chicago, Department of Radiology, Chicago, Illinois, United States.

出版信息

J Med Imaging (Bellingham). 2018 Jan;5(1):011002. doi: 10.1117/1.JMI.5.1.011002. Epub 2017 Sep 19.

Abstract

The robustness of radiomic texture analysis across different manufacturers of mammography imaging systems is investigated. We quantified feature robustness across mammography manufacturers using a dataset of 111 women who underwent consecutive screening mammography on both general electric and Hologic systems. In each mammogram, a square region of interest (ROI) directly behind the nipple was manually selected. Radiomic features describing parenchymal patterns were automatically extracted on each ROI. Feature comparisons were conducted between manufacturers (and breast densities) using newly developed robustness metrics descriptive of correlation, equivalence, and variability. By examining the distribution of these metric values, we propose the following selection criteria to guide feature evaluation in this dataset: (1) [Formula: see text] of feature ratios [Formula: see text], (2) standard deviation of feature ratios [Formula: see text], (3) correlation of features [Formula: see text], and (4) [Formula: see text]. Statistically significant correlation coefficients ranged from 0.13 to 0.68 in comparisons between the two mammographic systems tested. Features describing spatial patterns tended to exhibit high correlation coefficients, while intensity- and directionality-based features had comparatively poor correlation. Our proposed robustness metrics may be used to evaluate other datasets, for which different ranges of metric values may be appropriate.

摘要

研究了乳腺钼靶成像系统不同制造商之间放射组学纹理分析的稳健性。我们使用111名在通用电气和Hologic系统上连续进行乳腺钼靶筛查的女性数据集,对不同乳腺钼靶制造商的特征稳健性进行了量化。在每幅乳腺钼靶图像中,手动选择乳头正后方的方形感兴趣区域(ROI)。在每个ROI上自动提取描述实质模式的放射组学特征。使用新开发的描述相关性、等效性和变异性的稳健性指标,在不同制造商(以及乳腺密度)之间进行特征比较。通过检查这些指标值的分布,我们提出以下选择标准来指导该数据集中的特征评估:(1)特征比率的[公式:见正文],(2)特征比率的标准差[公式:见正文],(3)特征的相关性[公式:见正文],以及(4)[公式:见正文]。在测试的两种乳腺钼靶系统之间的比较中,具有统计学意义的相关系数范围为0.13至0.68。描述空间模式的特征往往表现出较高的相关系数,而基于强度和方向性的特征相关性相对较差。我们提出的稳健性指标可用于评估其他数据集,对于这些数据集,可能适合不同范围的指标值。

相似文献

1
Quantitative texture analysis: robustness of radiomics across two digital mammography manufacturers' systems.
J Med Imaging (Bellingham). 2018 Jan;5(1):011002. doi: 10.1117/1.JMI.5.1.011002. Epub 2017 Sep 19.
2
3
Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices.
J Med Imaging (Bellingham). 2015 Apr;2(2):024501. doi: 10.1117/1.JMI.2.2.024501. Epub 2015 Apr 3.
4
Mammographic density measurements are not affected by mammography system.
J Med Imaging (Bellingham). 2015 Jan;2(1):015501. doi: 10.1117/1.JMI.2.1.015501. Epub 2015 Mar 4.
5
Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms.
J Med Imaging (Bellingham). 2017 Oct;4(4):041304. doi: 10.1117/1.JMI.4.4.041304. Epub 2017 Sep 13.
9
10
Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels.
Med Phys. 2017 Mar;44(3):1050-1062. doi: 10.1002/mp.12123.

引用本文的文献

4
Temporal Machine Learning Analysis of Prior Mammograms for Breast Cancer Risk Prediction.
Cancers (Basel). 2023 Apr 4;15(7):2141. doi: 10.3390/cancers15072141.
6
Effect of an iterative reconstruction quantum noise reduction technique on computed tomography radiomic features.
J Med Imaging (Bellingham). 2020 Nov;7(6):064007. doi: 10.1117/1.JMI.7.6.064007. Epub 2020 Dec 30.
7
Effects of variability in radiomics software packages on classifying patients with radiation pneumonitis.
J Med Imaging (Bellingham). 2020 Jan;7(1):014504. doi: 10.1117/1.JMI.7.1.014504. Epub 2020 Feb 21.
8
Variation in algorithm implementation across radiomics software.
J Med Imaging (Bellingham). 2018 Oct;5(4):044505. doi: 10.1117/1.JMI.5.4.044505. Epub 2018 Dec 4.
9
10
NCTN Assessment on Current Applications of Radiomics in Oncology.
Int J Radiat Oncol Biol Phys. 2019 Jun 1;104(2):302-315. doi: 10.1016/j.ijrobp.2019.01.087. Epub 2019 Jan 31.

本文引用的文献

4
Computer-aided breast cancer detection using mammograms: a review.
IEEE Rev Biomed Eng. 2013;6:77-98. doi: 10.1109/RBME.2012.2232289. Epub 2012 Dec 11.
5
Association between mammographic density and age-related lobular involution of the breast.
J Clin Oncol. 2010 May 1;28(13):2207-12. doi: 10.1200/JCO.2009.23.4120. Epub 2010 Mar 29.
6
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
7
Power spectral analysis of mammographic parenchymal patterns for breast cancer risk assessment.
J Digit Imaging. 2008 Jun;21(2):145-52. doi: 10.1007/s10278-007-9093-9. Epub 2008 Jan 3.
8
Fractal analysis of mammographic parenchymal patterns in breast cancer risk assessment.
Acad Radiol. 2007 May;14(5):513-21. doi: 10.1016/j.acra.2007.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验