Suppr超能文献

使用折射率匹配液增强多孔体积微流控捕获元件中的光学检测

Optical detection enhancement in porous volumetric microfluidic capture elements using refractive index matching fluids.

作者信息

Wiederoder M S, Peterken L, Lu A X, Rahmanian O D, Raghavan S R, DeVoe D L

机构信息

Department of Bioengineering, University of Maryland, College Park, Maryland, USA.

出版信息

Analyst. 2015 Aug 21;140(16):5724-31. doi: 10.1039/c5an00988j.

Abstract

Porous volumetric capture elements in microfluidic sensors are advantageous compared to planar capture surfaces due to higher reaction site density and decreased diffusion lengths that can reduce detection limits and total assay time. However a mismatch in refractive indices between the capture matrix and fluid within the porous interstices results in scattering of incident, reflected, or emitted light, significantly reducing the signal for optical detection. Here we demonstrate that perfusion of an index-matching fluid within a porous matrix minimizes scattering, thus enhancing optical signal by enabling the entire capture element volume to be probed. Signal enhancement is demonstrated for both fluorescence and absorbance detection, using porous polymer monoliths in a silica capillary and packed beds of glass beads within thermoplastic microchannels, respectively. Fluorescence signal was improved by a factor of 3.5× when measuring emission from a fluorescent compound attached directly to the polymer monolith, and up to 2.6× for a rapid 10 min direct immunoassay. When combining index matching with a silver enhancement step, a detection limit of 0.1 ng mL(-1) human IgG and a 5 log dynamic range was achieved. The demonstrated technique provides a simple method for enhancing optical sensitivity for a wide range of assays, enabling the full benefits of porous detection elements in miniaturized analytical systems to be realized.

摘要

与平面捕获表面相比,微流控传感器中的多孔体积捕获元件具有优势,这是因为其反应位点密度更高,扩散长度更短,可降低检测限并缩短总检测时间。然而,捕获基质与多孔间隙内流体之间的折射率不匹配会导致入射光、反射光或发射光发生散射,显著降低光学检测的信号。在此,我们证明在多孔基质中灌注折射率匹配流体可使散射最小化,从而通过探测整个捕获元件体积来增强光学信号。分别使用二氧化硅毛细管中的多孔聚合物整体柱和热塑性微通道内的玻璃珠填充床,对荧光检测和吸光度检测均展示了信号增强。当测量直接附着在聚合物整体柱上的荧光化合物的发射时,荧光信号提高了3.5倍;对于快速10分钟直接免疫测定,荧光信号提高了2.6倍。当将折射率匹配与银增强步骤相结合时,实现了0.1 ng mL(-1)人IgG的检测限和5个对数的动态范围。所展示的技术为提高各种检测的光学灵敏度提供了一种简单方法,使小型化分析系统中多孔检测元件的全部优势得以实现。

相似文献

2
Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements.
Sens Actuators B Chem. 2018 Jan;254:878-886. doi: 10.1016/j.snb.2017.07.137. Epub 2017 Jul 21.
3
Impedimetric Immunosensing in a Porous Volumetric Microfluidic Detector.
Sens Actuators B Chem. 2016 Oct 29;234:493-497. doi: 10.1016/j.snb.2016.05.015. Epub 2016 May 6.
5
Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips.
Sens Actuators B Chem. 2014 Oct 31;202:866-872. doi: 10.1016/j.snb.2014.06.023.
6
Diffusion of gold nanoparticles in porous silica monoliths determined by dynamic light scattering.
J Colloid Interface Sci. 2023 Jul;641:251-264. doi: 10.1016/j.jcis.2023.03.045. Epub 2023 Mar 11.
7
A chitosan coated monolith for nucleic acid capture in a thermoplastic microfluidic chip.
Biomicrofluidics. 2014 Jul 21;8(4):044109. doi: 10.1063/1.4891100. eCollection 2014 Jul.
9
Microfluidic chip to interface porous microneedles for ISF collection.
Biomed Microdevices. 2019 Mar 7;21(1):28. doi: 10.1007/s10544-019-0370-4.
10
Flow-through immunosensors using antibody-immobilized polymer monoliths.
Biosens Bioelectron. 2010 Sep 15;26(1):182-8. doi: 10.1016/j.bios.2010.06.007. Epub 2010 Jun 11.

引用本文的文献

1
Biosensors Based on Inorganic Composite Fluorescent Hydrogels.
Nanomaterials (Basel). 2023 May 26;13(11):1748. doi: 10.3390/nano13111748.
2
Flow-through microfluidic immunosensors with refractive index-matched silica monoliths as volumetric optical detection elements.
Sens Actuators B Chem. 2018 Jan;254:878-886. doi: 10.1016/j.snb.2017.07.137. Epub 2017 Jul 21.
3
Novel functionalities of hybrid paper-polymer centrifugal devices for assay performance enhancement.
Biomicrofluidics. 2017 Sep 12;11(5):054101. doi: 10.1063/1.5002644. eCollection 2017 Sep.
4
Impedimetric Immunosensing in a Porous Volumetric Microfluidic Detector.
Sens Actuators B Chem. 2016 Oct 29;234:493-497. doi: 10.1016/j.snb.2016.05.015. Epub 2016 May 6.

本文引用的文献

1
Protein biosensing with fluorescent microcapillaries.
Opt Express. 2015 Feb 9;23(3):2577-90. doi: 10.1364/OE.23.002577.
2
Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.
Langmuir. 2012 Sep 4;28(35):12923-9. doi: 10.1021/la302704t. Epub 2012 Aug 23.
3
Novel plastic biochips for colorimetric detection of biomolecules.
Anal Bioanal Chem. 2012 Oct;404(6-7):1935-44. doi: 10.1007/s00216-012-6297-8. Epub 2012 Aug 8.
4
Commercialization of microfluidic point-of-care diagnostic devices.
Lab Chip. 2012 Jun 21;12(12):2118-34. doi: 10.1039/c2lc21204h. Epub 2012 Feb 17.
5
Microfluidics-based diagnostics of infectious diseases in the developing world.
Nat Med. 2011 Jul 31;17(8):1015-9. doi: 10.1038/nm.2408.
6
Unconventional low-cost fabrication and patterning techniques for point of care diagnostics.
Ann Biomed Eng. 2011 Apr;39(4):1313-27. doi: 10.1007/s10439-010-0213-1. Epub 2010 Dec 9.
7
Tackling HIV through robust diagnostics in the developing world: current status and future opportunities.
Lab Chip. 2011 Jan 21;11(2):194-211. doi: 10.1039/c0lc00340a. Epub 2010 Dec 1.
8
Flow-through immunosensors using antibody-immobilized polymer monoliths.
Biosens Bioelectron. 2010 Sep 15;26(1):182-8. doi: 10.1016/j.bios.2010.06.007. Epub 2010 Jun 11.
10
Microfluidic patterning of miniaturized DNA arrays on plastic substrates.
ACS Appl Mater Interfaces. 2009 Jul;1(7):1387-95. doi: 10.1021/am900285g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验