Lamas-Maceiras Mónica, Rodríguez-Belmonte Esther, Becerra Manuel, González-Siso Ma Isabel, Cerdán Ma Esperanza
Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
Grupo de Investigación EXPRELA, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
Fungal Genet Biol. 2015 Sep;82:95-103. doi: 10.1016/j.fgb.2015.07.004. Epub 2015 Jul 9.
It has been previously reported that Gcr1 differentially controls growth and sugar utilization in Saccharomyces cerevisiae and Kluyveromyces lactis, although the regulatory mechanisms causing activation of glycolytic genes are conserved (Neil et al., 2004). We have found that KlGCR1 deletion diminishes glucose consumption and ethanol production, but increases resistance to oxidative stress caused by H2O2, cadmium and arsenate, glucose 6P dehydrogenase activity, and the NADPH/NADP(+) and GSH/GSSG ratios in K. lactis. The gene KlZWF1 that encodes for glucose 6P dehydrogenase, the first enzyme in the pentose phosphate pathway, is transcriptionally regulated by KlGcr1. The high resistance to oxidative stress observed in the ΔKlgcr1 mutant strain, could be explained as a consequence of an increased flux of glucose through the pentose phosphate pathway. Since mitochondrial respiration decreases in the ΔKlgcr1 mutant (García-Leiro et al., 2010), the reoxidation of the NADPH, produced through the pentose phosphate pathway, has to be achieved by the reduction of other molecules implied in the defense against oxidative stress, like GSSG. The higher GSH/GSSG ratio in the mutant would explain its phenotype of increased resistance to oxidative stress.
先前已有报道称,Gcr1在酿酒酵母和乳酸克鲁维酵母中对生长和糖利用进行差异控制,尽管导致糖酵解基因激活的调控机制是保守的(尼尔等人,2004年)。我们发现,在乳酸克鲁维酵母中缺失KlGCR1会减少葡萄糖消耗和乙醇产生,但会增加对由过氧化氢、镉和砷酸盐引起的氧化应激的抗性、葡萄糖6磷酸脱氢酶活性以及NADPH/NADP(+)和GSH/GSSG比值。编码戊糖磷酸途径中第一种酶葡萄糖6磷酸脱氢酶的基因KlZWF1受KlGcr1转录调控。在ΔKlgcr1突变株中观察到的对氧化应激的高抗性,可以解释为通过戊糖磷酸途径的葡萄糖通量增加的结果。由于在ΔKlgcr1突变体中线粒体呼吸减少(加西亚 - 莱罗等人,2010年),通过戊糖磷酸途径产生的NADPH的再氧化必须通过还原参与抗氧化应激的其他分子(如GSSG)来实现。突变体中较高的GSH/GSSG比值可以解释其抗氧化应激能力增强的表型。