Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain.
Fachbereich Biologie/Chemie, Universität Osnabrück, AG Genetik, Barbarastrasse 11, D-49076 Osnabrück, Germany.
Int J Mol Sci. 2022 Jan 11;23(2):772. doi: 10.3390/ijms23020772.
The milk yeast degrades glucose through glycolysis and the pentose phosphate pathway and follows a mainly respiratory metabolism. Here, we investigated the role of two reactions which are required for the final steps of glucose degradation from both pathways, as well as for gluconeogenesis, namely fructose-1,6-bisphosphate aldolase (FBA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In silico analyses identified one gene encoding the former (), and three genes encoding isoforms of the latter (, , ). Phenotypic analyses were performed by deleting the genes from the haploid genome. While deletions lacked detectable FBA activity, they still grew poorly on glucose. To investigate the in vivo importance of the GAPDH isoforms, different mutant combinations were analyzed for their growth behavior and enzymatic activity. KlTdh2 represented the major glycolytic GAPDH isoform, as its lack caused a slower growth on glucose. Cells lacking both KlTdh1 and KlTdh2 failed to grow on glucose but were still able to use ethanol as sole carbon sources, indicating that KlGdp1 is sufficient to promote gluconeogenesis. Life-cell fluorescence microscopy revealed that KlTdh2 accumulated in the nucleus upon exposure to oxidative stress, suggesting a moonlighting function of this isoform in the regulation of gene expression. Heterologous complementation of the deletion by the human gene renders a promising host for heterologous expression of human disease alleles and/or a screening system for specific drugs.
酵母通过糖酵解和磷酸戊糖途径降解葡萄糖,并遵循主要的呼吸代谢途径。在这里,我们研究了两种反应的作用,这两种反应对于来自两条途径的葡萄糖降解的最后步骤以及糖异生都是必需的,即果糖-1,6-二磷酸醛缩酶(FBA)和甘油醛-3-磷酸脱氢酶(GAPDH)。 计算机分析鉴定出一个编码前者的基因(),以及三个编码后者同工酶的基因(,,)。通过从单倍体基因组中删除这些基因来进行表型分析。虽然 缺失没有检测到 FBA 活性,但它们在葡萄糖上的生长仍然很差。为了研究 GAPDH 同工酶的体内重要性,分析了不同的突变体组合的生长行为和酶活性。KlTdh2 代表主要的糖酵解 GAPDH 同工酶,因为其缺乏导致在葡萄糖上的生长较慢。缺失 KlTdh1 和 KlTdh2 的细胞无法在葡萄糖上生长,但仍能够将乙醇作为唯一碳源使用,表明 KlGdp1 足以促进糖异生。活细胞荧光显微镜显示,KlTdh2 在暴露于氧化应激时积累在核内,表明该同工酶在基因表达调控中的 moonlighting 功能。通过人 基因异源互补 缺失,使得 成为表达人疾病等位基因的有前途的宿主和/或筛选特定药物的筛选系统。