Suppr超能文献

指数随机图模型抽样下的一致性

CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

作者信息

Shalizi Cosma Rohilla, Rinaldo Alessandro

机构信息

Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 USA.

出版信息

Ann Stat. 2013 Apr;41(2):508-535. doi: 10.1214/12-AOS1044.

Abstract

The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

摘要

网络数据可用性的不断提高以及对分布式系统的科学兴趣,促使网络结构统计模型迅速发展。然而,通常这些都是针对整个网络的模型,而数据仅由一个抽样子网组成。通过将模型应用于子网来估计整个网络(这才是我们感兴趣的对象)的参数。这假定模型是……,或者就随机过程理论而言,它定义了一个投影族。聚焦于流行的指数随机图模型(ERGM)类别,我们表明许多流行且具有科学吸引力的模型实际上违反了这个看似微不足道的条件,并且满足该条件会极大地限制ERGM的表达能力。这些结果实际上是关于相依随机变量指数族的更一般结果的特殊情况,我们也证明了这些一般结果。利用这些结果,我们为ERGM中极大似然估计的一致性提供了易于检验的条件,并讨论了一些可能的建设性应对措施。

相似文献

1
CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.
Ann Stat. 2013 Apr;41(2):508-535. doi: 10.1214/12-AOS1044.
2
Impact of Survey Design on Estimation of Exponential-Family Random Graph Models from Egocentrically-Sampled Data.
Soc Networks. 2022 May;69:22-34. doi: 10.1016/j.socnet.2020.10.001. Epub 2021 Jun 12.
3
A survey on exponential random graph models: an application perspective.
PeerJ Comput Sci. 2020 Apr 6;6:e269. doi: 10.7717/peerj-cs.269. eCollection 2020.
4
Exponential-family random graph models for valued networks.
Electron J Stat. 2012;6:1100-1128. doi: 10.1214/12-EJS696.
6
Multilevel network data facilitate statistical inference for curved ERGMs with geometrically weighted terms.
Netw Sci (Camb Univ Press). 2019 Oct;59:98-119. doi: 10.1016/j.socnet.2018.11.003. Epub 2019 Jun 28.
7
Practical Network Modeling via Tapered Exponential-family Random Graph Models.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
8
Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects.
J Stat Softw. 2008;24(4):1548-7660. doi: 10.18637/jss.v024.i04.
10
Testing biological network motif significance with exponential random graph models.
Appl Netw Sci. 2021;6(1):91. doi: 10.1007/s41109-021-00434-y. Epub 2021 Nov 22.

引用本文的文献

1
Variable Selection for High-dimensional Nodal Attributes in Social Networks with Degree Heterogeneity.
J Am Stat Assoc. 2024;119(546):1322-1335. doi: 10.1080/01621459.2023.2187815. Epub 2023 Apr 13.
2
Modelling and monitoring social network change based on exponential random graph models.
J Appl Stat. 2023 Jul 4;51(9):1621-1641. doi: 10.1080/02664763.2023.2230530. eCollection 2024.
3
Modeling homophily in dynamic networks with application to HIV molecular surveillance.
BMC Infect Dis. 2023 Oct 4;23(1):656. doi: 10.1186/s12879-023-08598-x.
4
Practical Network Modeling via Tapered Exponential-family Random Graph Models.
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.
5
Estimating contact network properties by integrating multiple data sources associated with infectious diseases.
Stat Med. 2023 Sep 10;42(20):3593-3615. doi: 10.1002/sim.9816. Epub 2023 Jul 1.
7
A Semiparametric Bayesian Approach to Epidemics, with Application to the Spread of the Coronavirus MERS in South Korea in 2015.
J Nonparametr Stat. 2022;34(3):628-662. doi: 10.1080/10485252.2021.1972294. Epub 2021 Sep 16.
8
A lexicon-based approach to examine depression detection in social media: the case of Twitter and university community.
Humanit Soc Sci Commun. 2022;9(1):325. doi: 10.1057/s41599-022-01313-2. Epub 2022 Sep 21.
9
On network backbone extraction for modeling online collective behavior.
PLoS One. 2022 Sep 15;17(9):e0274218. doi: 10.1371/journal.pone.0274218. eCollection 2022.
10
Analysis of Networks with Missing Data with Application to the National Longitudinal Study of Adolescent Health.
J R Stat Soc Ser C Appl Stat. 2017 Apr;66(3):501-519. doi: 10.1111/rssc.12184. Epub 2016 Sep 29.

本文引用的文献

1
MODELING SOCIAL NETWORKS FROM SAMPLED DATA.
Ann Appl Stat. 2010;4(1):5-25. doi: 10.1214/08-AOAS221.
2
Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models.
Stat Methodol. 2011 Jul;8(4):319-339. doi: 10.1016/j.stamet.2011.01.005.
3
Stochastic blockmodels and community structure in networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
4
A nonparametric view of network models and Newman-Girvan and other modularities.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21068-73. doi: 10.1073/pnas.0907096106. Epub 2009 Nov 23.
7
Solution for the properties of a clustered network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026136. doi: 10.1103/PhysRevE.72.026136. Epub 2005 Aug 29.
8
Subnets of scale-free networks are not scale-free: sampling properties of networks.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4221-4. doi: 10.1073/pnas.0501179102. Epub 2005 Mar 14.
9
Solution of the two-star model of a network.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066146. doi: 10.1103/PhysRevE.70.066146. Epub 2004 Dec 29.
10
Statistical mechanics of networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066117. doi: 10.1103/PhysRevE.70.066117. Epub 2004 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验