Stewart Jonathan, Schweinberger Michael, Bojanowski Michal, Morris Martina
Department of Statistics, Rice University, 6100 Main St, Houston, TX 77005, USA.
Department of Quantitative Methods & Information Technology, Kozminski University, 57/59 Jagiellonska St, 03-301 Warsaw, Poland.
Netw Sci (Camb Univ Press). 2019 Oct;59:98-119. doi: 10.1016/j.socnet.2018.11.003. Epub 2019 Jun 28.
Multilevel network data provide two important benefits for ERG modeling. First, they facilitate estimation of the decay parameters in geometrically weighted terms for degree and triad distributions. Estimating decay parameters from a single network is challenging, so in practice they are typically fixed rather than estimated. Multilevel network data overcome that challenge by leveraging replication. Second, such data make it possible to assess out-of-sample performance using traditional cross-validation techniques. We demonstrate these benefits by using a multilevel network sample of classroom networks from Poland. We show that estimating the decay parameters improves in-sample performance of the model and that the out-of-sample performance of our best model is strong, suggesting that our findings can be generalized to the population of interest.
多层次网络数据为ERG建模提供了两个重要优势。首先,它们有助于以几何加权的方式估计度分布和三元组分布的衰减参数。从单个网络估计衰减参数具有挑战性,因此在实践中它们通常是固定的而非估计得出。多层次网络数据通过利用复制克服了这一挑战。其次,此类数据使得使用传统交叉验证技术评估样本外性能成为可能。我们通过使用来自波兰的课堂网络多层次网络样本证明了这些优势。我们表明,估计衰减参数可提高模型的样本内性能,并且我们最佳模型的样本外性能很强,这表明我们的研究结果可以推广到感兴趣的总体。