Suppr超能文献

多级网络数据有助于对具有几何加权项的曲线指数随机图模型进行统计推断。

Multilevel network data facilitate statistical inference for curved ERGMs with geometrically weighted terms.

作者信息

Stewart Jonathan, Schweinberger Michael, Bojanowski Michal, Morris Martina

机构信息

Department of Statistics, Rice University, 6100 Main St, Houston, TX 77005, USA.

Department of Quantitative Methods & Information Technology, Kozminski University, 57/59 Jagiellonska St, 03-301 Warsaw, Poland.

出版信息

Netw Sci (Camb Univ Press). 2019 Oct;59:98-119. doi: 10.1016/j.socnet.2018.11.003. Epub 2019 Jun 28.

Abstract

Multilevel network data provide two important benefits for ERG modeling. First, they facilitate estimation of the decay parameters in geometrically weighted terms for degree and triad distributions. Estimating decay parameters from a single network is challenging, so in practice they are typically fixed rather than estimated. Multilevel network data overcome that challenge by leveraging replication. Second, such data make it possible to assess out-of-sample performance using traditional cross-validation techniques. We demonstrate these benefits by using a multilevel network sample of classroom networks from Poland. We show that estimating the decay parameters improves in-sample performance of the model and that the out-of-sample performance of our best model is strong, suggesting that our findings can be generalized to the population of interest.

摘要

多层次网络数据为ERG建模提供了两个重要优势。首先,它们有助于以几何加权的方式估计度分布和三元组分布的衰减参数。从单个网络估计衰减参数具有挑战性,因此在实践中它们通常是固定的而非估计得出。多层次网络数据通过利用复制克服了这一挑战。其次,此类数据使得使用传统交叉验证技术评估样本外性能成为可能。我们通过使用来自波兰的课堂网络多层次网络样本证明了这些优势。我们表明,估计衰减参数可提高模型的样本内性能,并且我们最佳模型的样本外性能很强,这表明我们的研究结果可以推广到感兴趣的总体。

相似文献

4
Curved Exponential Family Models for Social Networks.社交网络的曲线指数族模型
Soc Networks. 2007 Mar;29(2):216-230. doi: 10.1016/j.socnet.2006.08.005.
7
Practical Network Modeling via Tapered Exponential-family Random Graph Models.通过渐缩指数族随机图模型进行实用网络建模
J Comput Graph Stat. 2023;32(2):388-401. doi: 10.1080/10618600.2022.2116444. Epub 2022 Oct 11.

本文引用的文献

7
Computational Statistical Methods for Social Network Models.社交网络模型的计算统计方法
J Comput Graph Stat. 2012 Dec 1;21(4):856-882. doi: 10.1080/10618600.2012.732921.
8
Instability, Sensitivity, and Degeneracy of Discrete Exponential Families.离散指数族的不稳定性、敏感性和退化性。
J Am Stat Assoc. 2011 Dec 1;106(496):1361-1370. doi: 10.1198/jasa.2011.tm10747. Epub 2012 Jan 24.
10
Attitudes and cognitive organization.态度与认知组织。
J Psychol. 1946 Jan;21:107-12. doi: 10.1080/00223980.1946.9917275.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验