Wu Wei, Jia Fan, Rhemtulla Mijke, Little Todd D
Department of Psychology, University of Kansas, 1415 Jayhawk Blvd., Lawrence, KS, 66044, USA.
University of Amsterdam, Amsterdam, The Netherlands.
Behav Res Methods. 2016 Sep;48(3):1047-61. doi: 10.3758/s13428-015-0629-5.
The design of longitudinal data collection is an essential component of any study of change. A well-designed study will maximize the efficiency of statistical tests and minimize the cost of available resources (e.g., budget). Two families of designs have been used to collect longitudinal data: complete data (CD) and planned missing (PM) designs. This article proposes a systematic and flexible procedure named SEEDMC (SEarch for Efficient Designs using Monte Carlo Simulation) to search for efficient CD and PM designs for growth-curve modeling under budget constraints. This procedure allows researchers to identify efficient designs for multiple effects separately and simultaneously, and designs that are robust to MCAR attrition. SEEDMC is applied to identify efficient designs for key change parameters in linear and quadratic growth models. The identified efficient designs are summarized and the strengths and possible extensions of SEEDMC are discussed.
纵向数据收集的设计是任何变化研究的重要组成部分。精心设计的研究将使统计检验的效率最大化,并将可用资源(如预算)的成本降至最低。已经使用了两类设计来收集纵向数据:完整数据(CD)设计和计划缺失(PM)设计。本文提出了一种名为SEEDMC(使用蒙特卡罗模拟搜索高效设计)的系统且灵活的程序,用于在预算约束下搜索用于增长曲线建模的高效CD和PM设计。该程序允许研究人员分别和同时识别多种效应的高效设计,以及对随机缺失损耗具有稳健性的设计。将SEEDMC应用于识别线性和二次增长模型中关键变化参数的高效设计。总结了所识别的高效设计,并讨论了SEEDMC的优势和可能的扩展。