Suppr超能文献

人类新的和扩展的注意力网络的功能进化

Functional evolution of new and expanded attention networks in humans.

作者信息

Patel Gaurav H, Yang Danica, Jamerson Emery C, Snyder Lawrence H, Corbetta Maurizio, Ferrera Vincent P

机构信息

Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032;

State University of New York College of Optometry, New York, NY 10036;

出版信息

Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9454-9. doi: 10.1073/pnas.1420395112. Epub 2015 Jul 13.

Abstract

Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks.

摘要

猕猴常被用作认知神经基础侵入性研究的模型系统。然而,人类和猕猴与其最后的共同祖先在2500万年前就开始分化,这可能极大地影响了认知过程(如注意力)所依赖的皮质网络的功能。我们通过比较猕猴和人类执行相同视觉搜索任务时的功能磁共振成像数据,研究了注意力所依赖的额顶叶网络的同源性。尽管存在广泛的相似性,但我们发现了这两个物种之间的根本差异。首先,人类比猕猴拥有更多的背侧注意力网络区域,这表明在进化过程中,人类的注意力系统相对于猕猴有所扩展。其次,背侧注意力网络中潜在的同源区域在表征对侧半视野方面存在明显不同的偏向,这表明这些区域的潜在神经结构在最基本的属性(如感受野分布)上可能存在差异。第三,尽管这项视觉搜索任务明确显示人类腹侧注意力网络存在颞顶联合节点的功能证据,但我们在猕猴中未发现颞顶联合的功能证据。这些差异均不是由两个物种在训练、实验能力或解剖变异性方面的差异导致的。这项研究的结果表明,猕猴的数据应谨慎应用于人类认知模型,并证明了进化如何塑造皮质网络。

相似文献

1
Functional evolution of new and expanded attention networks in humans.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9454-9. doi: 10.1073/pnas.1420395112. Epub 2015 Jul 13.
3
On the neural basis of focused and divided attention.
Brain Res Cogn Brain Res. 2005 Dec;25(3):760-76. doi: 10.1016/j.cogbrainres.2005.09.011. Epub 2005 Dec 5.
4
A ventral salience network in the macaque brain.
Neuroimage. 2016 May 15;132:190-197. doi: 10.1016/j.neuroimage.2016.02.029. Epub 2016 Feb 17.
5
Attention mechanisms in visual search -- an fMRI study.
J Cogn Neurosci. 2000;12 Suppl 2:61-75. doi: 10.1162/089892900564073.
6
Functional connectivity of parietal cortex during temporal selective attention.
Cortex. 2015 Apr;65:195-207. doi: 10.1016/j.cortex.2015.01.015. Epub 2015 Feb 9.
7
Neural mechanisms of visual attention: object-based selection of a region in space.
J Cogn Neurosci. 2000;12 Suppl 2:106-17. doi: 10.1162/089892900563975.
8
The evolution of the temporoparietal junction and posterior superior temporal sulcus.
Cortex. 2019 Sep;118:38-50. doi: 10.1016/j.cortex.2019.01.026. Epub 2019 Feb 7.
9
Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI.
Neuroimage. 2015 Aug 1;116:10-29. doi: 10.1016/j.neuroimage.2015.04.068. Epub 2015 May 10.

引用本文的文献

1
Neural mechanisms of resource allocation in working memory.
Sci Adv. 2025 Apr 11;11(15):eadr8015. doi: 10.1126/sciadv.adr8015. Epub 2025 Apr 9.
3
Increased anterior insula connectivity associated with cognitive maintenance in amnestic mild cognitive impairment: a longitudinal study.
Brain Imaging Behav. 2024 Oct;18(5):1001-1009. doi: 10.1007/s11682-024-00899-2. Epub 2024 May 24.
4
Neural mechanisms of resource allocation in working memory.
bioRxiv. 2024 May 12:2024.05.11.593695. doi: 10.1101/2024.05.11.593695.
5
Species -shared and -unique gyral peaks on human and macaque brains.
Elife. 2024 Apr 18;12:RP90182. doi: 10.7554/eLife.90182.
6
Intracortical recordings reveal vision-to-action cortical gradients driving human exogenous attention.
Nat Commun. 2024 Mar 26;15(1):2586. doi: 10.1038/s41467-024-46013-4.
7
Early life stress, literacy and dyslexia: an evolutionary perspective.
Brain Struct Funct. 2024 May;229(4):809-822. doi: 10.1007/s00429-024-02766-8. Epub 2024 Mar 4.
8
Common and distinct neural mechanisms of attention.
Trends Cogn Sci. 2024 Jun;28(6):554-567. doi: 10.1016/j.tics.2024.01.005. Epub 2024 Feb 22.
9
Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review.
Front Hum Neurosci. 2023 Sep 28;17:1250096. doi: 10.3389/fnhum.2023.1250096. eCollection 2023.
10
The Road Not Taken: Disconnection of a Human-Unique Cortical Pathway Underlying Naturalistic Social Perception in Schizophrenia.
Biol Psychiatry Glob Open Sci. 2022 Mar 22;3(3):398-408. doi: 10.1016/j.bpsgos.2022.03.008. eCollection 2023 Jul.

本文引用的文献

1
Topographic organization in the brain: searching for general principles.
Trends Cogn Sci. 2014 Jul;18(7):351-63. doi: 10.1016/j.tics.2014.03.008. Epub 2014 May 23.
2
Functional fractionation of the stimulus-driven attention network.
J Neurosci. 2014 May 14;34(20):6958-69. doi: 10.1523/JNEUROSCI.4975-13.2014.
3
4
Prefrontal contributions to visual selective attention.
Annu Rev Neurosci. 2013 Jul 8;36:451-66. doi: 10.1146/annurev-neuro-062111-150439.
5
Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10806-11. doi: 10.1073/pnas.1302956110. Epub 2013 Jun 10.
6
Maps of space in human frontoparietal cortex.
J Physiol Paris. 2013 Dec;107(6):510-6. doi: 10.1016/j.jphysparis.2013.04.002. Epub 2013 Apr 18.
7
Evolutionarily novel functional networks in the human brain?
J Neurosci. 2013 Feb 20;33(8):3259-75. doi: 10.1523/JNEUROSCI.4392-12.2013.
8
Language-selective and domain-general regions lie side by side within Broca's area.
Curr Biol. 2012 Nov 6;22(21):2059-62. doi: 10.1016/j.cub.2012.09.011. Epub 2012 Oct 11.
9
Explaining brain size variation: from social to cultural brain.
Trends Cogn Sci. 2012 May;16(5):277-84. doi: 10.1016/j.tics.2012.04.004. Epub 2012 Apr 17.
10
The role of temporo-parietal junction (TPJ) in global Gestalt perception.
Brain Struct Funct. 2012 Jul;217(3):735-46. doi: 10.1007/s00429-011-0369-y. Epub 2011 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验