College of Computer Science and Technology, Qingdao University, Qingdao City, China.
PLoS One. 2024 Mar 13;19(3):e0299970. doi: 10.1371/journal.pone.0299970. eCollection 2024.
The accuracy of traditional CT image segmentation algorithms is hindered by issues such as low contrast and high noise in the images. While numerous scholars have introduced deep learning-based CT image segmentation algorithms, they still face challenges, particularly in achieving high edge accuracy and addressing pixel classification errors. To tackle these issues, this study proposes the MIS-Net (Medical Images Segment Net) model, a deep learning-based approach. The MIS-Net model incorporates multi-scale atrous convolution into the encoding and decoding structure with symmetry, enabling the comprehensive extraction of multi-scale features from CT images. This enhancement aims to improve the accuracy of lung and liver edge segmentation. In the evaluation using the COVID-19 CT Lung and Infection Segmentation dataset, the left and right lung segmentation results demonstrate that MIS-Net achieves a Dice Similarity Coefficient (DSC) of 97.61. Similarly, in the Liver Tumor Segmentation Challenge 2017 public dataset, the DSC of MIS-Net reaches 98.78.
传统 CT 图像分割算法的准确性受到图像对比度低、噪声高的影响。虽然许多学者已经引入了基于深度学习的 CT 图像分割算法,但它们仍然面临挑战,特别是在实现高精度的边缘和解决像素分类错误方面。为了解决这些问题,本研究提出了基于深度学习的 MIS-Net(Medical Images Segment Net)模型。MIS-Net 模型在对称的编码和解码结构中引入了多尺度空洞卷积,能够从 CT 图像中全面提取多尺度特征。这种增强旨在提高肺和肝边缘分割的准确性。在使用 COVID-19 CT 肺和感染分割数据集进行评估时,左、右肺分割结果表明 MIS-Net 的 Dice 相似系数(DSC)达到 97.61。同样,在 2017 年肝脏肿瘤分割挑战赛公共数据集上,MIS-Net 的 DSC 达到 98.78。