Mallarino Juan Pablo, Téllez Gabriel
Facultad de Ciencias, Laboratorio Computacional HPC, Universidad de los Andes, Bogotá, Colombia.
Departamento de Física, Universidad de los Andes, Bogotá, Colombia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jun;91(6):062140. doi: 10.1103/PhysRevE.91.062140. Epub 2015 Jun 29.
We present a comprehensive study of the two-dimensional one-component plasma in the cell model with charged boundaries. Starting from weak couplings through a convenient approximation of the interacting potential we were able to obtain an analytic formulation to the problem deriving the partition function, density profile, contact densities, and integrated profiles that compared well with the numerical data from Monte Carlo simulations. Additionally, we derived the exact solution for the special cases of Ξ=1,2,3,⋯, finding a correspondence between those from weak couplings and the latter. Furthermore, we investigated the strong-coupling regime taking into consideration the Wigner formulation. Elaborating on this, we obtained the profile to leading order, computed the contact density values as compared to those derived in an earlier work on the contact theorem. We formulated adequately the strong-coupling regime for this system that differed from previous formulations. Ultimately, we calculated the first-order corrections and compared them against numerical results from our simulations with very good agreement; these results compared equally well in the planar limit, whose results are well known.
我们对具有带电边界的元胞模型中的二维单组分等离子体进行了全面研究。从弱耦合开始,通过对相互作用势的便利近似,我们能够获得该问题的解析公式,推导了配分函数、密度分布、接触密度和积分分布,这些结果与蒙特卡罗模拟的数值数据吻合良好。此外,我们推导出了Ξ = 1、2、3、⋯等特殊情况下的精确解,发现了弱耦合情况下的解与后者之间的对应关系。此外,我们考虑了维格纳公式来研究强耦合区域。在此基础上,我们得到了至主导阶的分布,计算了与早期关于接触定理的工作中得出的接触密度值相比的接触密度值。我们为该系统恰当地制定了与先前公式不同的强耦合区域。最终,我们计算了一阶修正,并将其与我们模拟的数值结果进行比较,结果吻合得非常好;这些结果在平面极限情况下同样吻合得很好,其结果是众所周知的。