Savo V, Joy R, Caneva G, McClatchey W C
Hakai Institute, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
Department of Science, University Roma Tre, Viale Marconi 446, 00146, Rome, Italy.
J Ethnobiol Ethnomed. 2015 Jul 15;11:58. doi: 10.1186/s13002-015-0038-y.
Many ethnobotanical studies have investigated selection criteria for medicinal and non-medicinal plants. In this paper we test several statistical methods using different ethnobotanical datasets in order to 1) define to which extent the nature of the datasets can affect the interpretation of results; 2) determine if the selection for different plant uses is based on phylogeny, or other selection criteria.
We considered three different ethnobotanical datasets: two datasets of medicinal plants and a dataset of non-medicinal plants (handicraft production, domestic and agro-pastoral practices) and two floras of the Amalfi Coast. We performed residual analysis from linear regression, the binomial test and the Bayesian approach for calculating under-used and over-used plant families within ethnobotanical datasets. Percentages of agreement were calculated to compare the results of the analyses. We also analyzed the relationship between plant selection and phylogeny, chorology, life form and habitat using the chi-square test. Pearson's residuals for each of the significant chi-square analyses were examined for investigating alternative hypotheses of plant selection criteria.
The three statistical analysis methods differed within the same dataset, and between different datasets and floras, but with some similarities. In the two medicinal datasets, only Lamiaceae was identified in both floras as an over-used family by all three statistical methods. All statistical methods in one flora agreed that Malvaceae was over-used and Poaceae under-used, but this was not found to be consistent with results of the second flora in which one statistical result was non-significant. All other families had some discrepancy in significance across methods, or floras. Significant over- or under-use was observed in only a minority of cases. The chi-square analyses were significant for phylogeny, life form and habitat. Pearson's residuals indicated a non-random selection of woody species for non-medicinal uses and an under-use of plants of temperate forests for medicinal uses.
Our study showed that selection criteria for plant uses (including medicinal) are not always based on phylogeny. The comparison of different statistical methods (regression, binomial and Bayesian) under different conditions led to the conclusion that the most conservative results are obtained using regression analysis.
许多民族植物学研究都调查了药用植物和非药用植物的选择标准。在本文中,我们使用不同的民族植物学数据集测试了几种统计方法,以便:1)确定数据集的性质在多大程度上会影响结果的解释;2)确定不同植物用途的选择是基于系统发育,还是其他选择标准。
我们考虑了三个不同的民族植物学数据集:两个药用植物数据集和一个非药用植物数据集(手工艺品生产、家庭及农牧实践),以及阿马尔菲海岸的两个植物区系。我们对民族植物学数据集中使用不足和使用过度的植物科进行了线性回归残差分析、二项式检验和贝叶斯方法分析。计算了一致性百分比以比较分析结果。我们还使用卡方检验分析了植物选择与系统发育、分布学、生活型和栖息地之间的关系。对每个显著的卡方分析的皮尔逊残差进行了检验,以研究植物选择标准的替代假设。
三种统计分析方法在同一数据集中、不同数据集和植物区系之间存在差异,但也有一些相似之处。在两个药用数据集中,只有唇形科在两个植物区系中均被所有三种统计方法鉴定为使用过度的科。一个植物区系中的所有统计方法都一致认为锦葵科使用过度而禾本科使用不足,但在第二个植物区系中未发现这与结果一致,其中一个统计结果不显著。所有其他科在不同方法或植物区系中的显著性存在一些差异。仅在少数情况下观察到显著的使用过度或不足。卡方分析对系统发育、生活型和栖息地具有显著性。皮尔逊残差表明非药用用途对木本物种的选择是非随机的,而温带森林植物在药用方面使用不足。
我们的研究表明,植物用途(包括药用)的选择标准并不总是基于系统发育。在不同条件下对不同统计方法(回归、二项式和贝叶斯)的比较得出结论,使用回归分析可获得最保守的结果。