Suppr超能文献

尼泊尔传统药物药用植物的选择。

Selection of medicinal plants for traditional medicines in Nepal.

机构信息

University of Wisconsin-Whitewater, Whitewater, WI, USA.

Ethnobotanical Society of Nepal, Kathmandu, Nepal.

出版信息

J Ethnobiol Ethnomed. 2021 Oct 16;17(1):59. doi: 10.1186/s13002-021-00486-5.

Abstract

BACKGROUND

There are handful hypothesis-driven ethnobotanical studies in Nepal. In this study, we tested the non-random medicinal plant selection hypothesis using national- and community-level datasets through three different types of regression: linear model with raw data, linear model with log-transformed data and negative binomial model.

METHODS

For each of these model, we identified over-utilized families as those with highest positive Studentized residuals and underutilized families with highest negative Studentized residuals. The national-level data were collected from online databases and available literature while the community-level data were collected from Baitadi and Darchula districts.

RESULTS

Both dataset showed larger variance (national dataset mean 6.51 < variance 156.31, community dataset mean 1.16 < variance 2.38). All three types of regression were important to determine the medicinal plant species selection and use differences among the total plant families, although negative binomial regression was most useful. The negative binomial showed a positive nonlinear relationship between total plant family size and number of medicinal species per family for the national dataset (β1 = 0.0160 ± 0.0009, Z1 = 16.59, p < 0.00001, AIC1 = 1181), and with similar slope and stronger performance for the community dataset (β2 = 0.1747 ± 0.0199, Z2 = 8.76, p < 0.00001, AIC2 = 270.78). Moraceae and Euphorbiaceae were found over-utilized while Rosaceae, Cyperaceae and Caryophyllaceae were recorded as underutilized.

CONCLUSIONS

As our datasets showed larger variance, negative binomial regression was found the most useful for testing non-random medicinal plant selection hypothesis. The predictions made by non-random selection of medicinal plants hypothesis holds true for community-level studies. The identification of over-utilized families is the first step toward sustainable conservation of plant resources and it provides a baseline for pharmacological research that might be leading to drug discovery.

摘要

背景

尼泊尔只有少数以假说为导向的民族植物学研究。在这项研究中,我们通过三种不同类型的回归(原始数据线性模型、对数转换后数据线性模型和负二项式模型),利用国家和社区层面的数据来检验非随机药用植物选择假说。

方法

对于每种模型,我们将具有最高正学生化残差的过度利用科识别为过度利用科,将具有最高负学生化残差的未充分利用科识别为未充分利用科。国家层面的数据来自在线数据库和现有文献,社区层面的数据来自巴蒂亚迪和达拉库拉地区。

结果

两个数据集的方差都较大(国家数据集的平均值为 6.51,方差为 156.31;社区数据集的平均值为 1.16,方差为 2.38)。尽管负二项式回归最有用,但所有三种类型的回归对于确定药用植物物种选择和不同植物科之间的利用差异都很重要。负二项式回归显示,国家数据集的总植物科大小与每科药用物种数量之间呈正非线性关系(β1=0.0160±0.0009,Z1=16.59,p<0.00001,AIC1=1181),社区数据集的斜率相似且表现更强(β2=0.1747±0.0199,Z2=8.76,p<0.00001,AIC2=270.78)。发现榕科和大戟科过度利用,而蔷薇科、莎草科和石竹科则未充分利用。

结论

由于我们的数据集显示出较大的方差,因此发现负二项式回归最适合检验非随机药用植物选择假说。药用植物非随机选择假说的预测适用于社区层面的研究。过度利用科的识别是实现植物资源可持续保护的第一步,为可能导致药物发现的药理学研究提供了基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b87/8520218/776724763f64/13002_2021_486_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验