Suppr超能文献

静息态功能磁共振成像中的血管耦合:来自多种模态的证据。

Vascular coupling in resting-state fMRI: evidence from multiple modalities.

作者信息

Zhu David C, Tarumi Takashi, Khan Muhammad Ayaz, Zhang Rong

机构信息

Departments of Radiology and Psychology, Cognitive Imaging Research Center, Michigan State University, East Lansing, Michigan, USA.

Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA.

出版信息

J Cereb Blood Flow Metab. 2015 Dec;35(12):1910-20. doi: 10.1038/jcbfm.2015.166. Epub 2015 Jul 15.

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) provides a potential to understand intrinsic brain functional connectivity. However, vascular effects in rs-fMRI are still not fully understood. Through multiple modalities, we showed marked vascular signal fluctuations and high-level coupling among arterial pressure, cerebral blood flow (CBF) velocity and brain tissue oxygenation at <0.08 Hz. These similar spectral power distributions were also observed in blood oxygen level-dependent (BOLD) signals obtained from six representative regions of interest (ROIs). After applying brain global, white-matter, cerebrospinal fluid (CSF) mean signal regressions and low-pass filtering (<0.08 Hz), the spectral power of BOLD signal was reduced by 55.6% to 64.9% in all ROIs (P=0.011 to 0.001). The coherence of BOLD signal fluctuations between an ROI pair within a same brain network was reduced by 9.9% to 20.0% (P=0.004 to <0.001), but a larger reduction of 22.5% to 37.3% (P=0.032 to <0.001) for one not in a same network. Global signal regression overall had the largest impact in reducing spectral power (by 52.2% to 61.7%) and coherence, relative to the other three preprocessing steps. Collectively, these findings raise a critical question of whether a large portion of rs-fMRI signals can be attributed to the vascular effects produced from upstream changes in cerebral hemodynamics.

摘要

静息态功能磁共振成像(rs-fMRI)为理解大脑内在功能连接提供了一种可能。然而,rs-fMRI中的血管效应仍未被完全理解。通过多种模态,我们发现在<0.08 Hz频率下,动脉压、脑血流(CBF)速度和脑组织氧合之间存在明显的血管信号波动和高水平耦合。在从六个代表性感兴趣区域(ROI)获得的血氧水平依赖(BOLD)信号中也观察到了这些相似的频谱功率分布。在应用脑全局、白质、脑脊液(CSF)平均信号回归和低通滤波(<0.08 Hz)后,所有ROI中BOLD信号的频谱功率降低了55.6%至64.9%(P = 0.011至0.001)。同一脑网络内ROI对之间BOLD信号波动的相干性降低了9.9%至20.0%(P = 0.004至<0.001),但对于不在同一网络中的ROI对,相干性降低幅度更大,为22.5%至37.3%(P = 0.032至<0.001)。相对于其他三个预处理步骤,全局信号回归在降低频谱功率(降低52.2%至61.7%)和相干性方面总体影响最大。总的来说,这些发现提出了一个关键问题,即rs-fMRI信号的很大一部分是否可归因于脑血流动力学上游变化产生的血管效应。

相似文献

1
Vascular coupling in resting-state fMRI: evidence from multiple modalities.
J Cereb Blood Flow Metab. 2015 Dec;35(12):1910-20. doi: 10.1038/jcbfm.2015.166. Epub 2015 Jul 15.
2
Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
Neuroimage. 2018 Jun;173:72-87. doi: 10.1016/j.neuroimage.2018.02.004. Epub 2018 Feb 13.
4
Fractal analysis of spontaneous fluctuations of the BOLD signal in the human brain networks.
J Magn Reson Imaging. 2014 May;39(5):1118-25. doi: 10.1002/jmri.24274. Epub 2013 Sep 11.
5
BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
Neuroimage. 2015 Feb 15;107:207-218. doi: 10.1016/j.neuroimage.2014.12.012. Epub 2014 Dec 12.
6
Dynamic and static contributions of the cerebrovasculature to the resting-state BOLD signal.
Neuroimage. 2014 Jan 1;84:672-80. doi: 10.1016/j.neuroimage.2013.09.057. Epub 2013 Oct 4.
7
Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.
Neuroimage. 2015 Feb 1;106:111-22. doi: 10.1016/j.neuroimage.2014.11.028. Epub 2014 Nov 21.
8
The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults.
Hum Brain Mapp. 2020 Jun 1;41(8):2121-2135. doi: 10.1002/hbm.24934. Epub 2020 Feb 7.
9
Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
Neuroimage. 2004 Apr;21(4):1652-64. doi: 10.1016/j.neuroimage.2003.11.025.

引用本文的文献

1
Multi-Metric Approach for the Comparison of Denoising Techniques for Resting-State fMRI.
Hum Brain Mapp. 2025 May;46(7):e70080. doi: 10.1002/hbm.70080.
2
Study protocol: Cerebral autoregulation, brain perfusion, and neurocognitive outcomes after traumatic brain injury -CAPCOG-TBI.
Front Neurol. 2024 Oct 16;15:1465226. doi: 10.3389/fneur.2024.1465226. eCollection 2024.
3
Functional network antagonism and consciousness.
Netw Neurosci. 2022 Oct 1;6(4):998-1009. doi: 10.1162/netn_a_00244. eCollection 2022.
4
Evaluation of noise regression techniques in resting-state fMRI studies using data of 434 older adults.
Front Neurosci. 2022 Oct 19;16:1006056. doi: 10.3389/fnins.2022.1006056. eCollection 2022.
5
Mind blanking is a distinct mental state linked to a recurrent brain profile of globally positive connectivity during ongoing mentation.
Proc Natl Acad Sci U S A. 2022 Oct 11;119(41):e2200511119. doi: 10.1073/pnas.2200511119. Epub 2022 Oct 4.
7
8
Mapping the subcortical connectivity of the human default mode network.
Neuroimage. 2021 Dec 15;245:118758. doi: 10.1016/j.neuroimage.2021.118758. Epub 2021 Nov 25.
9
Seed-based dual regression: An illustration of the impact of dual regression's inherent filtering of global signal.
J Neurosci Methods. 2022 Jan 15;366:109410. doi: 10.1016/j.jneumeth.2021.109410. Epub 2021 Nov 16.
10
BOLD Coupling between Lesioned and Healthy Brain Is Associated with Glioma Patients' Recovery.
Cancers (Basel). 2021 Oct 6;13(19):5008. doi: 10.3390/cancers13195008.

本文引用的文献

2
3
Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI.
J Neurosci. 2014 Jan 8;34(2):356-62. doi: 10.1523/JNEUROSCI.0276-13.2014.
4
Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains.
Front Hum Neurosci. 2013 Oct 16;7:676. doi: 10.3389/fnhum.2013.00676. eCollection 2013.
5
Simultaneous quantitative assessment of cerebral physiology using respiratory-calibrated MRI and near-infrared spectroscopy in healthy adults.
Neuroimage. 2014 Jan 15;85 Pt 1:255-63. doi: 10.1016/j.neuroimage.2013.07.015. Epub 2013 Jul 14.
6
Model-based quantification of cerebral hemodynamics as a physiomarker for Alzheimer's disease?
Ann Biomed Eng. 2013 Nov;41(11):2296-317. doi: 10.1007/s10439-013-0837-z. Epub 2013 Jun 15.
7
Very-low-frequency oscillations of cerebral hemodynamics and blood pressure are affected by aging and cognitive load.
Neuroimage. 2014 Jan 15;85 Pt 1:608-15. doi: 10.1016/j.neuroimage.2013.04.107. Epub 2013 May 6.
8
Multimodal integration of fNIRS, fMRI and EEG neuroimaging.
Clin Neurophysiol. 2013 Oct;124(10):2060-2. doi: 10.1016/j.clinph.2013.03.018. Epub 2013 May 3.
9
Resting-state fMRI confounds and cleanup.
Neuroimage. 2013 Oct 15;80:349-59. doi: 10.1016/j.neuroimage.2013.04.001. Epub 2013 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验