Vsevolozhskaya Olga A, Anthony James C
Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
Neuropsychopharmacology. 2016 Feb;41(3):869-76. doi: 10.1038/npp.2015.213. Epub 2015 Jul 15.
Studying transitions from first drug use (DU) to drug dependence (DD) onset, we estimate a parsimonious set of parameters based on epidemiological data, with plans for future longitudinal research on newly incident drug users and with tracking of self-administration frequencies and DD clinical features. Our expectation is a distinctive sigmoid pattern with one asymptote for lower DD probability (when DU is insubstantial), upturning slopes of DD risk beyond a middle value (PD50), and eventual higher DD risk asymptotes at higher DU frequencies. We illustrate this novel approach using cross-sectional data from the United States National Surveys on Drug Use and Health, 2002-2011. Empirical DD probabilities observed soon after newly incident use are estimated across DU frequency values, using parametric Hill functions and four governing parameters for differential comparison across drugs and DU subgroups. Among drug subtypes considered, cocaine shows larger estimates, especially among females (estimated P(min)=7% for females vs 3% for males; p<0.001), for whom PD50 is shorter by 8 days of use (p=0.027), conditional on the same rate of use in the past 30 days. Clear alcohol male-female differences also are observed (eg, female PD50 < male PD50; p=0.002). Although based on cross-sectional snapshots soon after DU onset, this novel multiparametric statistical approach for comparative epidemiological DD research creates new opportunities in planned studies with prospectively gathered longitudinal data. The cross-sectional estimates provide starting values needed to plan future longitudinal research programs on transitions from initial DU until formation of a DD syndrome.
在研究从首次吸毒(DU)到药物依赖(DD)发作的转变过程中,我们基于流行病学数据估计了一组简约的参数,并计划对新出现的吸毒者进行未来的纵向研究,同时跟踪自我给药频率和DD临床特征。我们预期会出现一种独特的S形模式,即较低的DD概率有一条渐近线(当DU不显著时),超过中间值(PD50)后DD风险的上升斜率,以及在较高DU频率下最终更高的DD风险渐近线。我们使用2002 - 2011年美国全国药物使用和健康调查的横断面数据说明了这种新方法。在不同的DU频率值上,使用参数化的希尔函数和四个控制参数来估计新出现吸毒后不久观察到的经验性DD概率,以便对不同药物和DU亚组进行差异比较。在所考虑的药物亚型中,可卡因的估计值更大,尤其是在女性中(女性估计的P(min)=7%,男性为3%;p<0.001),在过去30天使用速率相同的情况下,女性的PD50使用天数短8天(p = 0.027)。也观察到了明显的酒精使用上的男女差异(例如,女性的PD50 < 男性的PD50;p = 0.002)。尽管基于DU发作后不久的横断面快照,但这种用于比较流行病学DD研究的新的多参数统计方法为利用前瞻性收集的纵向数据进行的计划研究创造了新机会。横断面估计提供了规划从最初的DU到形成DD综合征转变的未来纵向研究项目所需的起始值。