Suppr超能文献

基于非线性双稳态动力学模型的脑电信号判别分析方法研究

Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.

作者信息

Ying Xiaoguo, Lin Han, Hui Guohua

机构信息

a College of Information Engineering; Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province ; Zhejiang A & F University ; Linan , China.

出版信息

Bioengineered. 2015;6(5):297-8. doi: 10.1080/21655979.2015.1065360. Epub 2015 Jul 15.

Abstract

Electroencephalogram (EEG) is the recording of electrical activity along the scalp. EEG measures voltage fluctuations generating from ionic current flows within the neurons of the brain. EEG signal is looked as one of the most important factors that will be focused in the next 20 years. In this paper, EEG signal discrimination based on non-linear bistable dynamical model was proposed. EEG signals were processed by non-linear bistable dynamical model, and features of EEG signals were characterized by coherence index. Experimental results showed that the proposed method could properly extract the features of different EEG signals.

摘要

脑电图(EEG)是沿头皮记录的电活动。脑电图测量大脑神经元内离子电流流动产生的电压波动。脑电图信号被视为未来20年将重点关注的最重要因素之一。本文提出了基于非线性双稳动力学模型的脑电图信号判别方法。利用非线性双稳动力学模型对脑电图信号进行处理,并用相干指数表征脑电图信号的特征。实验结果表明,该方法能够正确提取不同脑电图信号的特征。

相似文献

1
Study on non-linear bistable dynamics model based EEG signal discrimination analysis method.
Bioengineered. 2015;6(5):297-8. doi: 10.1080/21655979.2015.1065360. Epub 2015 Jul 15.
2
Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition.
Clin EEG Neurosci. 2013 Oct;44(4):257-64. doi: 10.1177/1550059413477090. Epub 2013 Mar 26.
3
Motor imagery EEG discrimination using the correlation of wavelet features.
Clin EEG Neurosci. 2015 Apr;46(2):94-9. doi: 10.1177/1550059413514974. Epub 2014 Mar 5.
4
Bispectrum-based feature extraction technique for devising a practical brain-computer interface.
J Neural Eng. 2011 Apr;8(2):025014. doi: 10.1088/1741-2560/8/2/025014. Epub 2011 Mar 24.
5
A new discriminative common spatial pattern method for motor imagery brain-computer interfaces.
IEEE Trans Biomed Eng. 2009 Nov;56(11 Pt 2):2730-3. doi: 10.1109/TBME.2009.2026181. Epub 2009 Jul 14.
6
Enhancing the performance of motor imagery EEG classification using phase features.
Clin EEG Neurosci. 2015 Apr;46(2):113-8. doi: 10.1177/1550059414555123. Epub 2014 Nov 16.
7
Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
IEEE Trans Neural Syst Rehabil Eng. 2015 Sep;23(5):867-76. doi: 10.1109/TNSRE.2014.2375879. Epub 2014 Dec 2.
8
Time sparsification of EEG signals in motor-imagery based brain computer interfaces.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4271-4. doi: 10.1109/EMBC.2012.6346910.
9
Time-variant spatial filtering for motor imagery classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3124-7. doi: 10.1109/IEMBS.2007.4352991.
10
New KF-PP-SVM classification method for EEG in brain-computer interfaces.
Biomed Mater Eng. 2014;24(6):3665-73. doi: 10.3233/BME-141194.

本文引用的文献

1
Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease.
Neuroimage. 2009 Jan 1;44(1):123-35. doi: 10.1016/j.neuroimage.2008.08.005. Epub 2008 Aug 16.
2
Directionality of EEG synchronization in Alzheimer's disease subjects.
Neurobiol Aging. 2009 Jan;30(1):93-102. doi: 10.1016/j.neurobiolaging.2007.05.007. Epub 2007 Jun 15.
4
Activity driven adaptive stochastic resonance.
Phys Rev Lett. 2003 Mar 28;90(12):120602. doi: 10.1103/PhysRevLett.90.120602. Epub 2003 Mar 27.
6
Stochastic resonance at phase noise in signal transmission.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):940-3. doi: 10.1103/physreve.61.940.
7
Amplification of small signals via stochastic resonance.
Phys Rev A. 1991 Dec 15;44(12):8032-8042. doi: 10.1103/physreva.44.8032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验