Suppr超能文献

基于微流控技术的具有可调直径的脂质-聚合物杂化纳米颗粒的高通量合成。

Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.

作者信息

Feng Qiang, Zhang Lu, Liu Chao, Li Xuanyu, Hu Guoqing, Sun Jiashu, Jiang Xingyu

机构信息

Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety , National Center for NanoScience and Technology, Beijing 100190, China.

LNM, Institute of Mechanics , Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Biomicrofluidics. 2015 Jun 23;9(5):052604. doi: 10.1063/1.4922957. eCollection 2015 Sep.

Abstract

Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system.

摘要

用于药物递送的核壳杂化纳米粒子(NPs)因其增强的治疗效果和良好的生物相容性而备受关注。在这项工作中,我们制造了一种两级微流控芯片,以实现单分散脂质-聚(乳酸-乙醇酸)纳米粒子的高通量、一步法和尺寸可调合成。通过改变两级微流控芯片内部的流速,可以调节杂化纳米粒子的尺寸。为了阐明杂化纳米粒子尺寸可控生成的机制,我们用共聚焦显微镜观察微通道内的流场,并通过数值模型进行模拟。实验和数值结果均表明,在高流速下混合效果增强,从而导致小尺寸且单分散的杂化纳米粒子的组装。体外实验表明,大尺寸的杂化纳米粒子在血清中更易聚集,并且与小尺寸的相比,其细胞摄取效率较低。这种微流控芯片作为优化纳米药物递送系统的强大平台具有巨大潜力。

相似文献

1
Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.
Biomicrofluidics. 2015 Jun 23;9(5):052604. doi: 10.1063/1.4922957. eCollection 2015 Sep.
2
3
Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
Eur J Pharm Biopharm. 2013 Nov;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub 2013 Jul 17.
4
Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption.
J Pharm Sci. 2017 Oct;106(10):3120-3130. doi: 10.1016/j.xphs.2017.05.029. Epub 2017 May 27.
5
Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability.
Acta Biomater. 2015 Dec;28:149-159. doi: 10.1016/j.actbio.2015.09.032. Epub 2015 Sep 30.
6
Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.
PLoS One. 2022 Aug 4;17(8):e0271050. doi: 10.1371/journal.pone.0271050. eCollection 2022.
8
One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip.
RSC Adv. 2024 Apr 8;14(16):11258-11265. doi: 10.1039/d4ra01956c. eCollection 2024 Apr 3.
10
Microfluidic platform for controlled synthesis of polymeric nanoparticles.
Nano Lett. 2008 Sep;8(9):2906-12. doi: 10.1021/nl801736q. Epub 2008 Jul 26.

引用本文的文献

1
Lipid nanoparticles: a promising tool for nucleic acid delivery in cancer immunotherapy.
Med Oncol. 2025 Aug 6;42(9):409. doi: 10.1007/s12032-025-02939-3.
2
Lipid-Polymer Hybrid Nanoparticles as a Smart Drug Delivery System for Peptide/Protein Delivery.
Pharmaceutics. 2025 Jun 19;17(6):797. doi: 10.3390/pharmaceutics17060797.
4
Strategies for targeted gene delivery using lipid nanoparticles and cell-derived nanovesicles.
Nanoscale Adv. 2023 Jul 7;5(15):3834-3856. doi: 10.1039/d3na00198a. eCollection 2023 Jul 25.
6
Dual targeting nanoparticles for epilepsy therapy.
Chem Sci. 2022 Oct 19;13(43):12913-12920. doi: 10.1039/d2sc03298h. eCollection 2022 Nov 9.
8
Microfluidic assisted synthesis of PLGA drug delivery systems.
RSC Adv. 2019 Jan 15;9(4):2055-2072. doi: 10.1039/c8ra08972h. eCollection 2019 Jan 14.
9
Extracellular Vesicle-Based Hybrid Systems for Advanced Drug Delivery.
Pharmaceutics. 2022 Jan 23;14(2):267. doi: 10.3390/pharmaceutics14020267.
10
Towards principled design of cancer nanomedicine to accelerate clinical translation.
Mater Today Bio. 2022 Feb 1;13:100208. doi: 10.1016/j.mtbio.2022.100208. eCollection 2022 Jan.

本文引用的文献

1
Microfluidic synthesis of rigid nanovesicles for hydrophilic reagents delivery.
Angew Chem Int Ed Engl. 2015 Mar 23;54(13):3952-6. doi: 10.1002/anie.201500096. Epub 2015 Feb 20.
3
A microfluidic co-culture system to monitor tumor-stromal interactions on a chip.
Biomicrofluidics. 2014 Dec 5;8(6):064118. doi: 10.1063/1.4903762. eCollection 2014 Nov.
4
Three-dimensional printing-based electro-millifluidic devices for fabricating multi-compartment particles.
Biomicrofluidics. 2014 Dec 1;8(6):064112. doi: 10.1063/1.4902929. eCollection 2014 Nov.
5
Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake.
Adv Mater. 2015 Feb 25;27(8):1402-7. doi: 10.1002/adma.201404788. Epub 2014 Dec 22.
6
Liposome-containing polymer films and colloidal assemblies towards biomedical applications.
Nanoscale. 2014 Jun 21;6(12):6426-33. doi: 10.1039/c4nr00459k.
8
Microfluidic electrical sorting of particles based on shape in a spiral microchannel.
Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.
10
Synergistic inhibition of breast cancer by co-delivery of VEGF siRNA and paclitaxel via vapreotide-modified core-shell nanoparticles.
Biomaterials. 2014 Jun;35(18):5028-38. doi: 10.1016/j.biomaterials.2014.03.012. Epub 2014 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验