Lohse Martin J, Hofmann Klaus Peter
Institute of Pharmacology and Toxicology, Rudolf Virchow Center, and Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany (M.J.L.); Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Berlin, Germany (K.P.H.); and Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany (K.P.H.)
Institute of Pharmacology and Toxicology, Rudolf Virchow Center, and Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany (M.J.L.); Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Berlin, Germany (K.P.H.); and Zentrum für Biophysik und Bioinformatik, Humboldt-Universität zu Berlin, Berlin, Germany (K.P.H.).
Mol Pharmacol. 2015 Sep;88(3):572-8. doi: 10.1124/mol.115.100248. Epub 2015 Jul 16.
Signaling by G-protein-coupled receptors is often considered a uniform process, whereby a homogeneously activated proportion of randomly distributed receptors are activated under equilibrium conditions and produce homogeneous, steady-state intracellular signals. While this may be the case in some biologic systems, the example of rhodopsin with its strictly local single-quantum mode of function shows that homogeneity in space and time cannot be a general property of G-protein-coupled systems. Recent work has now revealed many other systems where such simplicity does not prevail. Instead, a plethora of mechanisms allows much more complex patterns of receptor activation and signaling: different mechanisms of protein-protein interaction; temporal changes under nonequilibrium conditions; localized receptor activation; and localized second messenger generation and degradation-all of which shape receptor-generated signals and permit the creation of multiple signal types. Here, we review the evidence for such pleiotropic receptor signaling in space and time.
G蛋白偶联受体的信号传导通常被认为是一个统一的过程,即在平衡条件下,随机分布的受体中均匀激活的一部分被激活,并产生均匀的稳态细胞内信号。虽然在某些生物系统中可能是这样,但视紫红质及其严格的局部单量子功能模式的例子表明,时空均匀性不可能是G蛋白偶联系统的普遍特性。最近的研究现已揭示出许多其他并非如此简单的系统。相反,大量机制允许更复杂的受体激活和信号传导模式:蛋白质-蛋白质相互作用的不同机制;非平衡条件下的时间变化;局部受体激活;以及局部第二信使的产生和降解——所有这些都塑造了受体产生的信号,并允许产生多种信号类型。在这里,我们综述了关于这种时空多效性受体信号传导的证据。