Suppr超能文献

Ego1-Ego2-Ego3复合物的晶体结构及其在促进Rag GTP酶依赖性TORC1信号传导中的作用。

Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling.

作者信息

Powis Katie, Zhang Tianlong, Panchaud Nicolas, Wang Rong, De Virgilio Claudio, Ding Jianping

机构信息

Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland.

National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.

出版信息

Cell Res. 2015 Sep;25(9):1043-59. doi: 10.1038/cr.2015.86. Epub 2015 Jul 24.

Abstract

The target of rapamycin complex 1 (TORC1) integrates various hormonal and nutrient signals to regulate cell growth, proliferation, and differentiation. Amino acid-dependent activation of TORC1 is mediated via the yeast EGO complex (EGOC) consisting of Gtr1, Gtr2, Ego1, and Ego3. Here, we identify the previously uncharacterized Ycr075w-a/Ego2 protein as an additional EGOC component that is required for the integrity and localization of the heterodimeric Gtr1-Gtr2 GTPases, equivalent to mammalian Rag GTPases. We also report the crystal structure of the Ego1-Ego2-Ego3 ternary complex (EGO-TC) at 2.4 Å resolution, in which Ego2 and Ego3 form a heterodimer flanked along one side by Ego1. Structural data also reveal the structural conservation of protein components between the yeast EGO-TC and the human Ragulator, which acts as a GEF for Rag GTPases. Interestingly, however, artificial tethering of Gtr1-Gtr2 to the vacuolar membrane is sufficient to activate TORC1 in response to amino acids even in the absence of the EGO-TC. Our structural and functional data therefore support a model in which the EGO-TC acts as a scaffold for Rag GTPases in TORC1 signaling.

摘要

雷帕霉素靶蛋白复合物1(TORC1)整合多种激素和营养信号以调节细胞生长、增殖和分化。TORC1的氨基酸依赖性激活是通过由Gtr1、Gtr2、Ego1和Ego3组成的酵母EGO复合物(EGOC)介导的。在此,我们鉴定出先前未被表征的Ycr075w-a/Ego2蛋白是EGOC的一个额外组分,它对于异源二聚体Gtr1-Gtr2 GTP酶(等同于哺乳动物的Rag GTP酶)的完整性和定位是必需的。我们还报告了Ego1-Ego2-Ego3三元复合物(EGO-TC)在2.4 Å分辨率下的晶体结构,其中Ego2和Ego3形成一个异源二聚体,一侧由Ego1环绕。结构数据还揭示了酵母EGO-TC和人类Ragulator(作为Rag GTP酶的鸟嘌呤核苷酸交换因子)之间蛋白质组分的结构保守性。然而,有趣的是,即使在没有EGO-TC的情况下,将Gtr1-Gtr2人工拴系到液泡膜上也足以响应氨基酸激活TORC1。因此,我们的结构和功能数据支持一个模型,即EGO-TC在TORC1信号传导中作为Rag GTP酶的支架。

相似文献

1
Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling.
Cell Res. 2015 Sep;25(9):1043-59. doi: 10.1038/cr.2015.86. Epub 2015 Jul 24.
2
Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1.
Structure. 2012 Dec 5;20(12):2151-60. doi: 10.1016/j.str.2012.09.019. Epub 2012 Nov 1.
3
Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2.
Mol Biol Cell. 2016 Jan 15;27(2):382-96. doi: 10.1091/mbc.E15-07-0470. Epub 2015 Nov 25.
4
Structural insights into the EGO-TC-mediated membrane tethering of the TORC1-regulatory Rag GTPases.
Sci Adv. 2019 Sep 25;5(9):eaax8164. doi: 10.1126/sciadv.aax8164. eCollection 2019 Sep.
5
SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation.
Cell Cycle. 2013 Sep 15;12(18):2948-52. doi: 10.4161/cc.26000. Epub 2013 Aug 13.
6
Amino acid homeostatic control by TORC1 in under high hydrostatic pressure.
J Cell Sci. 2020 Sep 9;133(17):jcs245555. doi: 10.1242/jcs.245555.
7
Amino Acids Stimulate TORC1 through Lst4-Lst7, a GTPase-Activating Protein Complex for the Rag Family GTPase Gtr2.
Cell Rep. 2015 Oct 6;13(1):1-7. doi: 10.1016/j.celrep.2015.08.059. Epub 2015 Sep 17.
8
The Vam6 GEF controls TORC1 by activating the EGO complex.
Mol Cell. 2009 Sep 11;35(5):563-73. doi: 10.1016/j.molcel.2009.06.033.
9
Leucyl-tRNA synthetase controls TORC1 via the EGO complex.
Mol Cell. 2012 Apr 13;46(1):105-10. doi: 10.1016/j.molcel.2012.02.009. Epub 2012 Mar 15.

引用本文的文献

1
Non-dikarya fungi share the TORC1 pathway with animals, not with Saccharomyces cerevisiae.
Sci Rep. 2025 Feb 18;15(1):5926. doi: 10.1038/s41598-025-89635-4.
2
Macronucleophagy maintains cell viability under nitrogen starvation by modulating micronucleophagy.
Nat Commun. 2024 Dec 17;15(1):10670. doi: 10.1038/s41467-024-55045-9.
3
Nutrient-dependent signaling pathways that control autophagy in yeast.
FEBS Lett. 2024 Jan;598(1):32-47. doi: 10.1002/1873-3468.14741. Epub 2023 Oct 9.
4
Paralogs in the PKA Regulon Traveled Different Evolutionary Routes to Divergent Expression in Budding Yeast.
Front Fungal Biol. 2021 Apr 27;2:642336. doi: 10.3389/ffunb.2021.642336. eCollection 2021.
5
Structure of the Schizosaccharomyces pombe Gtr-Lam complex reveals evolutionary divergence of mTORC1-dependent amino acid sensing.
Structure. 2023 Sep 7;31(9):1065-1076.e5. doi: 10.1016/j.str.2023.06.012. Epub 2023 Jul 14.
6
Snf1/AMPK fine-tunes TORC1 signaling in response to glucose starvation.
Elife. 2023 Feb 7;12:e84319. doi: 10.7554/eLife.84319.
7
TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi.
Microorganisms. 2023 Jan 15;11(1):218. doi: 10.3390/microorganisms11010218.
8
Ait1 regulates TORC1 signaling and localization in budding yeast.
Elife. 2022 Sep 1;11:e68773. doi: 10.7554/eLife.68773.
9
Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole.
J Cell Sci. 2022 Sep 15;135(18). doi: 10.1242/jcs.259994. Epub 2022 Sep 14.
10
Endocytosis of nutrient transporters in fungi: The ART of connecting signaling and trafficking.
Comput Struct Biotechnol J. 2021 Mar 19;19:1713-1737. doi: 10.1016/j.csbj.2021.03.013. eCollection 2021.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
PredictProtein--an open resource for online prediction of protein structural and functional features.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W337-43. doi: 10.1093/nar/gku366. Epub 2014 May 5.
3
Making new contacts: the mTOR network in metabolism and signalling crosstalk.
Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62. doi: 10.1038/nrm3757.
4
SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation.
Cell Cycle. 2013 Sep 15;12(18):2948-52. doi: 10.4161/cc.26000. Epub 2013 Aug 13.
6
Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II.
Small GTPases. 2013 Apr-Jun;4(2):62-9. doi: 10.4161/sgtp.24262. Epub 2013 Mar 19.
7
Amino acid signalling upstream of mTOR.
Nat Rev Mol Cell Biol. 2013 Mar;14(3):133-9. doi: 10.1038/nrm3522. Epub 2013 Jan 30.
8
Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1.
Structure. 2012 Dec 5;20(12):2151-60. doi: 10.1016/j.str.2012.09.019. Epub 2012 Nov 1.
9
Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1.
Cell. 2012 Sep 14;150(6):1196-208. doi: 10.1016/j.cell.2012.07.032.
10
Amino acids and mTORC1: from lysosomes to disease.
Trends Mol Med. 2012 Sep;18(9):524-33. doi: 10.1016/j.molmed.2012.05.007. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验