Suppr超能文献

内溶酶体膜运输复合体驱动营养物质依赖性的TORC1信号传导,以控制酿酒酵母中的细胞生长。

Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae.

作者信息

Kingsbury Joanne M, Sen Neelam D, Maeda Tatsuya, Heitman Joseph, Cardenas Maria E

机构信息

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.

出版信息

Genetics. 2014 Apr;196(4):1077-89. doi: 10.1534/genetics.114.161646. Epub 2014 Feb 10.

Abstract

The rapamycin-sensitive and endomembrane-associated TORC1 pathway controls cell growth in response to nutrients in eukaryotes. Mutations in class C Vps (Vps-C) complexes are synthetically lethal with tor1 mutations and confer rapamycin hypersensitivity in Saccharomyces cerevisiae, suggesting a role for these complexes in TORC1 signaling. Vps-C complexes are required for vesicular trafficking and fusion and comprise four distinct complexes: HOPS and CORVET and their minor intermediaries (i)-CORVET and i-HOPS. We show that at least one Vps-C complex is required to promote TORC1 activity, with the HOPS complex having the greatest input. The vps-c mutants fail to recover from rapamycin-induced growth arrest and show low levels of TORC1 activity. TORC1 promotes cell growth via Sch9, a p70(S6) kinase ortholog. Constitutively active SCH9 or hyperactive TOR1 alleles restored rapamycin recovery and TORC1 activity of vps-c mutants, supporting a role for the Vps-C complexes upstream of TORC1. The EGO GTPase complex Exit from G0 Complex (EGOC) and its homologous Rag-GTPase complex convey amino acid signals to TORC1 in yeast and mammals, respectively. Expression of the activated EGOC GTPase subunits Gtr1(GTP) and Gtr2(GDP) partially suppressed vps-c mutant rapamycin recovery defects, and this suppression was enhanced by increased amino acid concentrations. Moreover, vps-c mutations disrupted EGOC-TORC1 interactions. TORC1 defects were more severe for vps-c mutants than those observed in EGOC mutants. Taken together, our results support a model in which distinct endolysosomal trafficking Vps-C complexes promote rapamycin-sensitive TORC1 activity via multiple inputs, one of which involves maintenance of amino acid homeostasis that is sensed and transmitted to TORC1 via interactions with EGOC.

摘要

雷帕霉素敏感且与内膜相关的TORC1途径控制真核生物中细胞对营养物质的生长反应。C类Vps(Vps-C)复合物中的突变与tor1突变具有合成致死性,并在酿酒酵母中导致雷帕霉素超敏性,表明这些复合物在TORC1信号传导中起作用。Vps-C复合物是囊泡运输和融合所必需的,由四种不同的复合物组成:HOPS和CORVET及其次要中间体(i)-CORVET和i-HOPS。我们表明,至少需要一种Vps-C复合物来促进TORC1活性,其中HOPS复合物的作用最大。vps-c突变体无法从雷帕霉素诱导的生长停滞中恢复,并且显示出低水平的TORC1活性。TORC1通过Sch9(一种p70(S6)激酶直系同源物)促进细胞生长。组成型活性SCH9或超活性TOR1等位基因恢复了vps-c突变体的雷帕霉素恢复能力和TORC1活性,支持Vps-C复合物在TORC1上游的作用。EGO GTP酶复合物退出G0复合物(EGOC)及其同源的Rag-GTP酶复合物分别在酵母和哺乳动物中将氨基酸信号传递给TORC1。活化的EGOC GTP酶亚基Gtr1(GTP)和Gtr2(GDP)的表达部分抑制了vps-c突变体的雷帕霉素恢复缺陷,并且这种抑制作用随着氨基酸浓度的增加而增强。此外,vps-c突变破坏了EGOC-TORC1相互作用。vps-c突变体的TORC1缺陷比在EGOC突变体中观察到的更严重。综上所述,我们的结果支持一个模型,即不同的内溶酶体运输Vps-C复合物通过多种输入促进雷帕霉素敏感的TORC1活性,其中之一涉及维持氨基酸稳态,该稳态通过与EGOC的相互作用被感知并传递给TORC1。

相似文献

6
Leucyl-tRNA synthetase controls TORC1 via the EGO complex.亮氨酰-tRNA 合成酶通过 EGO 复合物控制 TORC1。
Mol Cell. 2012 Apr 13;46(1):105-10. doi: 10.1016/j.molcel.2012.02.009. Epub 2012 Mar 15.
10
Unsolved mysteries of Rag GTPase signaling in yeast.酵母中Rag GTP酶信号传导的未解之谜。
Small GTPases. 2016 Oct;7(4):239-246. doi: 10.1080/21541248.2016.1211070. Epub 2016 Jul 11.

引用本文的文献

7
Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32.TORC1 的下游效应物 NPR1 和 Par32 的反馈调节。
Mol Biol Cell. 2018 Nov 1;29(22):2751-2765. doi: 10.1091/mbc.E18-03-0158. Epub 2018 Aug 29.

本文引用的文献

3
Transient sequestration of TORC1 into stress granules during heat stress.热应激时 TORC1 暂时隔离到应激颗粒中。
Mol Cell. 2012 Jul 27;47(2):242-52. doi: 10.1016/j.molcel.2012.05.019. Epub 2012 Jun 21.
4
Leucyl-tRNA synthetase controls TORC1 via the EGO complex.亮氨酰-tRNA 合成酶通过 EGO 复合物控制 TORC1。
Mol Cell. 2012 Apr 13;46(1):105-10. doi: 10.1016/j.molcel.2012.02.009. Epub 2012 Mar 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验