Suppr超能文献

利用谱系分析量化驱动细菌进化的选择压力。

Quantifying selective pressures driving bacterial evolution using lineage analysis.

作者信息

Lambert Guillaume, Kussell Edo

机构信息

The Institute of Genomics and Systems Biology, The University of Chicago.

Department of Biology and Center for Genomics and Systems Biology, New York University and Department of Physics, New York University.

出版信息

Phys Rev X. 2015 Jan-Mar;5(1). doi: 10.1103/PhysRevX.5.011016.

Abstract

Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on -i.e. the life-histories of individuals and their ancestors- to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life-history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection, and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

摘要

生物体采用多种策略来适应环境并最大化长期生长潜力,但对使用这些策略所带来的益处以及它们对整个种群生长速率的影响进行定量表征仍然具有挑战性。在这里,我们使用一种路径积分框架,该框架描述了选择如何作用于个体及其祖先的生命历程,以证明基于谱系的测量可用于量化作用于种群的选择压力。我们将这种分析应用于暴露于羧苄青霉素周期性处理的细菌,羧苄青霉素是一种干扰细胞壁合成并以年龄依赖方式影响细胞的抗生素。虽然为了准确提取羧苄青霉素引起的年龄依赖性选择压力,有必要对数千个细胞的生命历程进行广泛表征,但使用一个存活细胞的基于谱系的统计数据可以概括相同的测量结果。全种群范围的进化压力可以从种群中存活谱系的特性中提取出来,这为量化作用于种群的进化力量提供了一种替代且有效的方法。重要的是,这种方法不仅限于年龄依赖性选择,并且该框架可以推广到使用基于谱系的测量来检测其他性状特异性选择的特征。我们的结果建立了一种研究选择作用下生命进化动态的有力方法,并且可能在阐明驱动抗生素抗性出现的选择压力以及生物系统中生存策略的进化方面具有广泛用途。

相似文献

5
Individual histories and selection in heterogeneous populations.个体史与异质群体中的选择。
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13183-8. doi: 10.1073/pnas.0912538107. Epub 2010 Jul 2.

引用本文的文献

本文引用的文献

2
ESTIMATING THE FORM OF NATURAL SELECTION ON A QUANTITATIVE TRAIT.估计数量性状上自然选择的形式。
Evolution. 1988 Sep;42(5):849-861. doi: 10.1111/j.1558-5646.1988.tb02507.x.
3
Memory and fitness optimization of bacteria under fluctuating environments.波动环境下细菌的记忆与适应性优化
PLoS Genet. 2014 Sep 25;10(9):e1004556. doi: 10.1371/journal.pgen.1004556. eCollection 2014 Sep.
6
Optimal lineage principle for age-structured populations.最优谱系原则在年龄结构种群中的应用。
Evolution. 2012 Jan;66(1):115-34. doi: 10.1111/j.1558-5646.2011.01418.x. Epub 2011 Sep 13.
7
Computer control of microscopes using µManager.使用µManager对显微镜进行计算机控制。
Curr Protoc Mol Biol. 2010 Oct;Chapter 14:Unit14.20. doi: 10.1002/0471142727.mb1420s92.
8
Measuring selection in contemporary human populations.测量当代人类群体中的选择。
Nat Rev Genet. 2010 Sep;11(9):611-22. doi: 10.1038/nrg2831. Epub 2010 Aug 3.
9
Individual histories and selection in heterogeneous populations.个体史与异质群体中的选择。
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13183-8. doi: 10.1073/pnas.0912538107. Epub 2010 Jul 2.
10
Inferring fitness landscapes.推断适应度景观。
Evolution. 2010 Sep;64(9):2510-20. doi: 10.1111/j.1558-5646.2010.01010.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验