Suppr超能文献

铂上甲酸氧化:一项简单的机理研究。

Formic acid oxidation on platinum: a simple mechanistic study.

作者信息

Schwarz Kathleen A, Sundararaman Ravishankar, Moffat Thomas P, Allison Thomas C

机构信息

National Institute of Standards and Technology, Material Measurement Laboratory, 100 Bureau Dr, Gaithersburg, MD, USA.

出版信息

Phys Chem Chem Phys. 2015 Aug 28;17(32):20805-13. doi: 10.1039/c5cp03045e. Epub 2015 Jul 27.

Abstract

The oxidation of small organic acids on noble metal surfaces under electrocatalytic conditions is important for the operation of fuel cells and is of scientific interest, but the basic reaction mechanisms continue to be a matter of debate. Formic acid oxidation on platinum is one of the simplest of these reactions, yet even this model system remains poorly understood. Historically, proposed mechanisms for the oxidation of formic acid involve the acid molecule as a reactant, but recent studies suggest that the formate anion is the reactant. Ab initio studies of this reaction do not address formate as a possible reactant, likely because of the difficulty of calculating a charged species near a charged solvated surface under potential control. Using the recently-developed joint density functional theory (JDFT) framework for electrochemistry, we perform ab initio calculations on a Pt(111) surface to explore this reaction and help resolve the debate. We find that when a formate anion approaches the platinum surface at typical operating voltages, with H pointing towards the surface, it reacts to form CO2 and adsorbed H with no barrier on a clean Pt surface. This mechanism leads to a reaction rate proportional to formate concentration and number of available platinum sites. Additionally, high coverages of adsorbates lead to large reaction barriers, and consequently, we expect the availability of metal sites to limit the experimentally observed reaction rate.

摘要

在电催化条件下,小分子有机酸在贵金属表面的氧化对于燃料电池的运行至关重要,并且具有科学研究价值,但基本反应机理仍存在争议。甲酸在铂上的氧化是这些反应中最简单的反应之一,然而即使是这个模型体系也仍未被充分理解。从历史上看,提出的甲酸氧化机理将酸分子视为反应物,但最近的研究表明甲酸根阴离子才是反应物。对该反应的从头算研究并未将甲酸根视为可能的反应物,这可能是因为在电势控制下计算带电溶剂化表面附近的带电物种存在困难。利用最近开发的用于电化学的联合密度泛函理论(JDFT)框架,我们在Pt(111)表面进行了从头算计算,以探索该反应并帮助解决争议。我们发现,当甲酸根阴离子在典型工作电压下接近铂表面,且H指向表面时,它会在清洁的Pt表面上无障碍地反应生成CO2和吸附的H。这种机理导致反应速率与甲酸根浓度和可用铂位点的数量成正比。此外,高覆盖率的吸附物会导致较大的反应势垒,因此,我们预计金属位点的可用性会限制实验观察到的反应速率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验