Suppr超能文献

由一氧化碳 - 溶剂间隙主导的一氧化碳端接的铂(111)的电化学电容。

Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap.

作者信息

Sundararaman Ravishankar, Figueiredo Marta C, Koper Marc T M, Schwarz Kathleen A

机构信息

Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12189, United States.

Department of Chemistry, Nano-Science Center Universitetsparken, University of Copenhagen , 5 2100 Copenhagen, Denmark.

出版信息

J Phys Chem Lett. 2017 Nov 2;8(21):5344-5348. doi: 10.1021/acs.jpclett.7b02383. Epub 2017 Oct 20.

Abstract

The distribution of electric fields within the electrochemical double layer depends on both the electrode and electrolyte in complex ways. These fields strongly influence chemical dynamics in the electrode-electrolyte interface but cannot be measured directly with submolecular resolution. We report experimental capacitance measurements for aqueous interfaces of CO-terminated Pt(111). By comparing these measurements with first-principles density functional theory (DFT) calculations, we infer microscopic field distributions and decompose contributions to the inverse capacitance from various spatial regions of the interface. We find that the CO is strongly electronically coupled to the Pt and that most of the interfacial potential difference appears across the gap between the terminating O and water and not across the CO molecule, as previously hypothesized. This "gap capacitance" resulting from hydrophobic termination lowers the overall capacitance of the aqueous Pt-CO interface and makes it less sensitive to electrolyte concentration compared to the bare metal.

摘要

电化学双层内电场的分布以复杂的方式取决于电极和电解质。这些电场强烈影响电极 - 电解质界面中的化学动力学,但无法以亚分子分辨率直接测量。我们报告了CO端接的Pt(111)水界面的实验电容测量结果。通过将这些测量结果与第一性原理密度泛函理论(DFT)计算进行比较,我们推断出微观场分布,并分解了界面各个空间区域对逆电容的贡献。我们发现CO与Pt有很强的电子耦合,并且如先前假设的那样,大部分界面电势差出现在端接的O与水之间的间隙中,而不是出现在CO分子上。由疏水端接产生的这种“间隙电容”降低了Pt - CO水界面的总电容,并且使其与裸金属相比对电解质浓度不太敏感。

相似文献

1
Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap.
J Phys Chem Lett. 2017 Nov 2;8(21):5344-5348. doi: 10.1021/acs.jpclett.7b02383. Epub 2017 Oct 20.
2
Double-layer structure of the Pt(111)-aqueous electrolyte interface.
Proc Natl Acad Sci U S A. 2022 Jan 18;119(3). doi: 10.1073/pnas.2116016119.
5
Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance.
ACS Nano. 2018 Oct 23;12(10):9763-9774. doi: 10.1021/acsnano.8b01427. Epub 2018 Sep 28.
6
Impact of Pt() Electrode Surface Structure on the Electrical Double Layer Capacitance.
J Am Chem Soc. 2024 Feb 14;146(6):3883-3889. doi: 10.1021/jacs.3c11403. Epub 2024 Feb 5.
10
Interfacial water asymmetry at ideal electrochemical interfaces.
J Chem Phys. 2022 Jan 7;156(1):014705. doi: 10.1063/5.0076038.

引用本文的文献

1
Cooperative Effect of Cations and Catalyst Structure in Tuning Alkaline Hydrogen Evolution on Pt Electrodes.
J Am Chem Soc. 2024 Mar 20;146(11):7305-7312. doi: 10.1021/jacs.3c11866. Epub 2024 Mar 7.
2
Molecular understanding of cation effects on double layers and their significance to CO-CO dimerization.
Natl Sci Rev. 2023 Apr 20;10(9):nwad105. doi: 10.1093/nsr/nwad105. eCollection 2023 Sep.
4
Improving the Accuracy of Atomistic Simulations of the Electrochemical Interface.
Chem Rev. 2022 Jun 22;122(12):10651-10674. doi: 10.1021/acs.chemrev.1c00800. Epub 2022 May 6.
5
Implicit Solvation Methods for Catalysis at Electrified Interfaces.
Chem Rev. 2022 Jun 22;122(12):10777-10820. doi: 10.1021/acs.chemrev.1c00675. Epub 2021 Dec 20.
6
The electrochemical interface in first-principles calculations.
Surf Sci Rep. 2020 May;75(2). doi: 10.1016/j.surfrep.2020.100492.
7
Thermodynamic Cyclic Voltammograms Based on Calculations: Ag(111) in Halide-Containing Solutions.
J Chem Theory Comput. 2021 Mar 9;17(3):1782-1794. doi: 10.1021/acs.jctc.0c01166. Epub 2021 Feb 19.
8
Resolving the Geometry/Charge Puzzle of the c(2 × 2)-Cl Cu(100) Electrode.
J Phys Chem Lett. 2021 Jan 14;12(1):440-446. doi: 10.1021/acs.jpclett.0c03115. Epub 2020 Dec 27.

本文引用的文献

1
JDFTx: software for joint density-functional theory.
SoftwareX. 2017;6:278-284. doi: 10.1016/j.softx.2017.10.006. Epub 2017 Nov 14.
3
First-principles electrostatic potentials for reliable alignment at interfaces and defects.
J Chem Phys. 2017 Mar 14;146(10):104109. doi: 10.1063/1.4978238.
5
Solvation Reaction Field at the Interface Measured by Vibrational Sum Frequency Generation Spectroscopy.
J Am Chem Soc. 2017 Feb 15;139(6):2369-2378. doi: 10.1021/jacs.6b11940. Epub 2017 Feb 3.
6
Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces.
Phys Chem Chem Phys. 2017 Jan 4;19(2):971-975. doi: 10.1039/c6cp07207k.
8
Formic acid oxidation on platinum: a simple mechanistic study.
Phys Chem Chem Phys. 2015 Aug 28;17(32):20805-13. doi: 10.1039/c5cp03045e. Epub 2015 Jul 27.
9
10
Interfacial effects on the band edges of functionalized si surfaces in liquid water.
J Am Chem Soc. 2014 Dec 10;136(49):17071-7. doi: 10.1021/ja5079865. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验