Sundararaman Ravishankar, Figueiredo Marta C, Koper Marc T M, Schwarz Kathleen A
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute , Troy, New York 12189, United States.
Department of Chemistry, Nano-Science Center Universitetsparken, University of Copenhagen , 5 2100 Copenhagen, Denmark.
J Phys Chem Lett. 2017 Nov 2;8(21):5344-5348. doi: 10.1021/acs.jpclett.7b02383. Epub 2017 Oct 20.
The distribution of electric fields within the electrochemical double layer depends on both the electrode and electrolyte in complex ways. These fields strongly influence chemical dynamics in the electrode-electrolyte interface but cannot be measured directly with submolecular resolution. We report experimental capacitance measurements for aqueous interfaces of CO-terminated Pt(111). By comparing these measurements with first-principles density functional theory (DFT) calculations, we infer microscopic field distributions and decompose contributions to the inverse capacitance from various spatial regions of the interface. We find that the CO is strongly electronically coupled to the Pt and that most of the interfacial potential difference appears across the gap between the terminating O and water and not across the CO molecule, as previously hypothesized. This "gap capacitance" resulting from hydrophobic termination lowers the overall capacitance of the aqueous Pt-CO interface and makes it less sensitive to electrolyte concentration compared to the bare metal.
电化学双层内电场的分布以复杂的方式取决于电极和电解质。这些电场强烈影响电极 - 电解质界面中的化学动力学,但无法以亚分子分辨率直接测量。我们报告了CO端接的Pt(111)水界面的实验电容测量结果。通过将这些测量结果与第一性原理密度泛函理论(DFT)计算进行比较,我们推断出微观场分布,并分解了界面各个空间区域对逆电容的贡献。我们发现CO与Pt有很强的电子耦合,并且如先前假设的那样,大部分界面电势差出现在端接的O与水之间的间隙中,而不是出现在CO分子上。由疏水端接产生的这种“间隙电容”降低了Pt - CO水界面的总电容,并且使其与裸金属相比对电解质浓度不太敏感。