Enjalbert Brice, Cocaign-Bousquet Muriel, Portais Jean-Charles, Letisse Fabien
Université de Toulouse, INSA, UPS, INP, Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France CNRS, UMR5504, Toulouse, France
Université de Toulouse, INSA, UPS, INP, Toulouse, France INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France CNRS, UMR5504, Toulouse, France.
J Bacteriol. 2015 Oct;197(19):3173-81. doi: 10.1128/JB.00128-15. Epub 2015 Jul 27.
Growth of Escherichia coli on glucose in batch culture is accompanied by the excretion of acetate, which is consumed by the cells when glucose is exhausted. This glucose-acetate transition is classically described as a diauxie (two successive growth stages). Here, we investigated the physiological and metabolic properties of cells after glucose exhaustion through the analysis of growth parameters and gene expression. We found that E. coli cells grown on glucose in batch culture produce acetate and consume it after glucose exhaustion but do not grow on acetate. Acetate is catabolized, but key anabolic genes--such as the genes encoding enzymes of the glyoxylate shunt--are not upregulated, hence preventing growth. Both the induction of the latter anabolic genes and growth were observed only after prolonged exposure to low concentrations of acetate and could be accelerated by high acetate concentrations. We postulate that such decoupling between acetate catabolism and acetate anabolism might be an advantage for the survival of E. coli in the ever-changing environment of the intestine.
The glucose-acetate transition is a valuable experimental model for comprehensive investigations of metabolic adaptation and a current paradigm for developing modeling approaches in systems microbiology. Yet, the work reported in our paper demonstrates that the metabolic behavior of Escherichia coli during the glucose-acetate transition is much more complex than what has been reported so far. A decoupling between acetate catabolism and acetate anabolism was observed after glucose exhaustion, which has not been reported previously. This phenomenon could represent a strategy for optimal utilization of carbon resources during colonization and persistence of E. coli in the gut and is also of significant interest for biotechnological applications.
在分批培养中,大肠杆菌在葡萄糖上生长时会伴随着乙酸盐的分泌,当葡萄糖耗尽时,细胞会消耗乙酸盐。这种葡萄糖 - 乙酸盐转变传统上被描述为二次生长(两个连续的生长阶段)。在这里,我们通过分析生长参数和基因表达来研究葡萄糖耗尽后细胞的生理和代谢特性。我们发现,在分批培养中在葡萄糖上生长的大肠杆菌细胞会产生乙酸盐,并在葡萄糖耗尽后消耗它,但不会在乙酸盐上生长。乙酸盐被分解代谢,但关键的合成代谢基因,如编码乙醛酸循环酶的基因,并未上调,因此阻止了生长。只有在长时间暴露于低浓度乙酸盐后才观察到后者合成代谢基因的诱导和生长,并且高乙酸盐浓度可以加速这种诱导和生长。我们推测,乙酸盐分解代谢和乙酸盐合成代谢之间的这种解偶联可能是大肠杆菌在不断变化的肠道环境中生存的一个优势。
葡萄糖 - 乙酸盐转变是全面研究代谢适应性的有价值的实验模型,也是系统微生物学中开发建模方法的当前范例。然而,我们论文中报道的工作表明,大肠杆菌在葡萄糖 - 乙酸盐转变期间的代谢行为比迄今为止报道的要复杂得多。在葡萄糖耗尽后观察到乙酸盐分解代谢和乙酸盐合成代谢之间的解偶联,这是以前未报道过的。这种现象可能代表了大肠杆菌在肠道定植和持续存在期间最佳利用碳资源的一种策略,并且对生物技术应用也具有重要意义。