Frellesen Claudia, Fessler Freia, Hardie Andrew D, Wichmann Julian L, De Cecco Carlo N, Schoepf U Joseph, Kerl J Matthias, Schulz Boris, Hammerstingl Renate, Vogl Thomas J, Bauer Ralf W
Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA.
Eur J Radiol. 2015 Nov;84(11):2052-8. doi: 10.1016/j.ejrad.2015.07.020. Epub 2015 Jul 19.
To evaluate a novel monoenergetic reconstruction algorithm (nMERA) with improved noise reduction for dual-energy CT (DECT) of pancreatic adenocarcinoma.
Sixty patients with suspected pancreatic carcinoma underwent dual-source dual-energy CT with arterial phase. Images were reconstructed as linearly-blended 120-kV series (M_0.6) and with the standard monoenergetic (sMERA) and the novel monoenergetic algorithm (nMERA) with photon energies of 40, 55, 70 and 80 keV. Objective image quality was compared regarding image noise, pancreas attenuation, signal-to-noise ratio (SNR) and pancreas-to-lesion contrast. Subjective image quality was assessed by two observers.
Thirty pancreatic adenocarcinomas were detected. nMERA showed significantly reduced image noise at low keV levels compared with sMERA images (55 keV: 7.19 ± 2.75 vs. 20.68 ± 7.01 HU; 40 keV: 7.33 ± 3.20 vs. 37.22 ± 14.66 HU) and M_0.6 (10.69 ± 3.57 HU). nMERA pancreatic SNR was significantly superior to standard monoenergetic at 40 (47.02 ± 23.41 vs. 9.37 ± 5.83) and 55 keV (28.29 ± 16.86 vs. 9.88 ± 7.01), and M_0.6 series (11.42 ± 6.00). Pancreas-to-lesion contrast peaked in the nMERA 40 keV series (26.39 ± 16.83) and was significantly higher than in all other series (p<0.001). nMERA 55 keV images series were consistently preferred by both observers over all other series (p<0.01).
nMERA DECT can significantly improve image quality and pancreas-to-lesion contrast in the diagnosis of pancreatic adenocarcinoma.
评估一种用于胰腺腺癌双能CT(DECT)的具有改进降噪功能的新型单能重建算法(nMERA)。
60例疑似胰腺癌患者接受了双源双能CT动脉期扫描。图像重建为线性混合120 kV系列(M_0.6)以及采用光子能量为40、55、70和80 keV的标准单能算法(sMERA)和新型单能算法(nMERA)。比较了图像噪声、胰腺衰减、信噪比(SNR)和胰腺与病变对比度等客观图像质量。由两名观察者评估主观图像质量。
共检测到30例胰腺腺癌。与sMERA图像(55 keV:7.19±2.75对20.68±7.01 HU;40 keV:7.33±3.20对37.22±14.66 HU)和M_0.6(10.69±3.57 HU)相比,nMERA在低keV水平下图像噪声显著降低。nMERA胰腺SNR在40(47.02±23.41对9.37±5.83)和55 keV(28.29±16.86对9.88±7.01)时显著优于标准单能算法,也优于M_0.6系列(11.42±6.00)。胰腺与病变对比度在nMERA 40 keV系列中达到峰值(26.39±16.83),且显著高于所有其他系列(p<0.001)。两名观察者均一致更倾向于nMERA 55 keV图像系列而非所有其他系列(p<0.01)。
nMERA DECT在胰腺腺癌诊断中可显著提高图像质量和胰腺与病变对比度。