Stracy Mathew, Lesterlin Christian, Garza de Leon Federico, Uphoff Stephan, Zawadzki Pawel, Kapanidis Achillefs N
Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom;
Bases Moléculaires et Structurales des Systèmes Infectieux, UMR 5086, Centre National de la Recherche Scientifique, University of Lyon, 69 367 Lyon, France;
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4390-9. doi: 10.1073/pnas.1507592112. Epub 2015 Jul 29.
Despite the fundamental importance of transcription, a comprehensive analysis of RNA polymerase (RNAP) behavior and its role in the nucleoid organization in vivo is lacking. Here, we used superresolution microscopy to study the localization and dynamics of the transcription machinery and DNA in live bacterial cells, at both the single-molecule and the population level. We used photoactivated single-molecule tracking to discriminate between mobile RNAPs and RNAPs specifically bound to DNA, either on promoters or transcribed genes. Mobile RNAPs can explore the whole nucleoid while searching for promoters, and spend 85% of their search time in nonspecific interactions with DNA. On the other hand, the distribution of specifically bound RNAPs shows that low levels of transcription can occur throughout the nucleoid. Further, clustering analysis and 3D structured illumination microscopy (SIM) show that dense clusters of transcribing RNAPs form almost exclusively at the nucleoid periphery. Treatment with rifampicin shows that active transcription is necessary for maintaining this spatial organization. In faster growth conditions, the fraction of transcribing RNAPs increases, as well as their clustering. Under these conditions, we observed dramatic phase separation between the densest clusters of RNAPs and the densest regions of the nucleoid. These findings show that transcription can cause spatial reorganization of the nucleoid, with movement of gene loci out of the bulk of DNA as levels of transcription increase. This work provides a global view of the organization of RNA polymerase and transcription in living cells.
尽管转录至关重要,但目前仍缺乏对RNA聚合酶(RNAP)行为及其在体内类核组织中作用的全面分析。在此,我们利用超分辨率显微镜在单分子和群体水平上研究了活细菌细胞中转录机制和DNA的定位及动态变化。我们使用光活化单分子追踪技术来区分移动的RNAP和特异性结合在启动子或转录基因上的DNA的RNAP。移动的RNAP在寻找启动子时可以探索整个类核,并将其85%的搜索时间用于与DNA的非特异性相互作用。另一方面,特异性结合的RNAP的分布表明,整个类核中均可发生低水平的转录。此外,聚类分析和三维结构光照显微镜(SIM)显示,转录中的RNAP密集簇几乎只在类核边缘形成。利福平处理表明,活跃转录对于维持这种空间组织是必要的。在生长较快的条件下,转录中的RNAP比例增加,其聚类也增加。在这些条件下,我们观察到RNAP最密集的簇与类核最密集的区域之间发生了显著的相分离。这些发现表明,随着转录水平的增加,转录可导致类核的空间重组,基因座从大部分DNA中移出。这项工作提供了活细胞中RNA聚合酶和转录组织的全局视图。